Advertisements
Advertisements
Question
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Solution
\[\frac{1}{\left( 2 + i \right)^2}\]
\[ = \frac{1}{4 + i^2 + 4i} \left( \because i^2 = - 1 \right)\]
\[ = \frac{1}{3 + 4i}\]
\[ = \frac{1}{3 + 4i} \times \frac{3 - 4i}{3 - 4i}\]
\[ = \frac{3 - 4i}{9 - 16 i^2}\]
\[ = \frac{3 - 4i}{9 + 16}\]
\[ = \frac{3}{25} - \frac{4}{25}i\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Evaluate the following:
\[i^{37} + \frac{1}{i^{67}}\].
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Find the value of the following expression:
i30 + i80 + i120
Find the value of the following expression:
i + i2 + i3 + i4
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
Write (i25)3 in polar form.
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
Write the argument of −i.
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Find a and b if (a – b) + (a + b)i = a + 5i
Find a and b if abi = 3a − b + 12i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Evaluate the following : i93
Evaluate the following : i116
Evaluate the following : `1/"i"^58`
Evaluate the following : i–888
Answer the following:
Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
State True or False for the following:
2 is not a complex number.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8