English

Answer the following: Show that z = 5(1-i)(2-i)(3-i) is purely imaginary number. - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.

Sum

Solution

z = `5/((1 - "i")(2 - "i")(3 - "i"))` 

= `5/((2 - "i" - 2"i" + "i"^2)(3 - "i"))`

= `5/((2 - 3"i" - 1)(3 - "i"))`    ...[∵ i2 = – 1]

= `5/((1 - 3"i")(3 - "i"))`

= `5/(3 - "i" - 9"i" + 3"i"^2`

= `5/(3 - 10"i" - 3)`

= `5/(-10"i")`

= `(5"i")/(-10"i"^2)`

= `(5"i")/10`

= `1/2"i"`, which is a purely imaginary number.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Miscellaneous Exercise 1.2 [Page 22]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 1 Complex Numbers
Miscellaneous Exercise 1.2 | Q II.08 | Page 22

RELATED QUESTIONS

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Find the value of the following expression:

i30 + i80 + i120


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


Find the real value of x and y, if

\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].

Disclaimer: There is a misprinting in the question. It should be  \[\left( 1 + i\sqrt{3} \right)\]  instead of \[\left( 1 + \sqrt{3} \right)\].


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


The polar form of (i25)3 is


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


Find a and b if a + 2b + 2ai = 4 + 6i


Evaluate the following : i116 


Evaluate the following : i–888 


Show that `(-1 + sqrt3 "i")^3` is a real number.


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×