English

Express the given complex number in the form a + ib: [(13+i73)+(4+i13)]-(-43+i) - Mathematics

Advertisements
Advertisements

Question

Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`

Sum

Solution

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`

= `[(1/3 + 4) + (7/3 + 1/3)] - ((-4)/3 + i)`

= `((1 + 12)/3) + i ((7 + 1)/3) + 4/3 - i`

= `13/3 + i 8/3 + 4/3 - i`

= `13/3 + 4/3 + i( 8/3 - 1)`

= `(13 + 4)/3 + i ((8 - 3)/3)`

= `17/3 + 5/3 i`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Exercise 5.1 [Page 104]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Exercise 5.1 | Q 7 | Page 104

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Find the value of the following expression:

i30 + i80 + i120


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:

`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i93  


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×