Advertisements
Advertisements
Question
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Solution 1
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
`= (2 + "i")/(3 + 6"i" - "i" - 2"i"^2)`
= `(2 + "i")/(3 + 5"i" - 2(-1))` ...[∵ i2 = – 1]
= `(2 + "i")/(5 + 5"i")`
= `(2 + "i")/(5(1 + "i"))`
= `((2 + "i")(1 - "i"))/(5(1 + "i")(1 - "i"))`
= `(2 - 2"i" + "i" - "i"^2)/(5(1 - "i"^2)`
= `(2 - "i" - (-1))/(5[1 - (-1)]` ...[∵ i2 = – 1]
= `(3- "i")/10`
∴ `(2 + "i")/((3 - "i")(1 + 2"i")) = 3/10 - 1/10"i"`
∴ a = `3/10` and b = `(-1)/10`
Solution 2
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
`= (2 + "i")/(3 + 6"i" - "i" - 2"i"^2)`
= `(2 + "i")/(3 + 5"i" - 2(-1))` ...[∵ i2 = – 1]
= `(2 + "i")/(3 + 5"i" + 2)`
= `(2 + "i")/(5 + 5"i")`
= `((2 + "i").(5 - 5"i"))/((5 + 5"i").(5 - 5"i"))`
= `(10 - 10"i" + 5"i" - 5"i"^2)/(5^2 - 5"i"^2)`
= `(10 - 10"i" + 5"i" - 5(-1))/(5^2 - 5"i"^2)` ...[∵ i2 = – 1]
= `(10 - 10"i" + 5"i" + 5)/(5^2 - 5"i"^2)`
= `(15 - 5"i")/(25 - 25(-1))`
= `(15 - 5"i")/(25 +25)`
= `(15 - 5"i")/(50)`
= `15/50 - (5"i")/50`
= `3/10 - (1"i")/10`
∴ write in a + ib form
∴ a = `3/10` and b = `(-1)/10`
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Express the given complex number in the form a + ib:
`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Evaluate the following:
i457
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Find the value of the following expression:
i30 + i80 + i120
Find the value of the following expression:
i5 + i10 + i15
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
Write 1 − i in polar form.
Write the argument of −i.
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
The argument of \[\frac{1 - i}{1 + i}\] is
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
Find a and b if (a – b) + (a + b)i = a + 5i
Find a and b if `1/("a" + "ib")` = 3 – 2i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
Show that `(-1 + sqrt(3)"i")^3` is a real number
Evaluate the following : i93
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
Match the statements of Column A and Column B.
Column A | Column B |
(a) The polar form of `i + sqrt(3)` is | (i) Perpendicular bisector of segment joining (–2, 0) and (2, 0). |
(b) The amplitude of `-1 + sqrt(-3)` is | (ii) On or outside the circle having centre at (0, –4) and radius 3. |
(c) If |z + 2| = |z − 2|, then locus of z is | (iii) `(2pi)/3` |
(d) If |z + 2i| = |z − 2i|, then locus of z is | (iv) Perpendicular bisector of segment joining (0, –2) and (0, 2). |
(e) Region represented by |z + 4i| ≥ 3 is | (v) `2(cos pi/6 + i sin pi/6)` |
(f) Region represented by |z + 4| ≤ 3 is | (vi) On or inside the circle having centre (–4, 0) and radius 3 units. |
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in | (vii) First quadrant |
(h) Reciprocal of 1 – i lies in | (viii) Third quadrant |
Show that `(-1 + sqrt3 "i")^3` is a real number.
Show that `(-1+ sqrt(3)i)^3` is a real number.
Show that `(-1+sqrt3i)^3` is a real number.