English

Express the following in the form of a + ib, a, b∈R i = −1. State the values of a and b: (2+i)(3-i)(1+2i) - Mathematics and Statistics

Advertisements
Advertisements

Question

Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`

Sum

Solution 1

`((2 + "i"))/((3 - "i")(1 + 2"i"))`

`= (2 + "i")/(3 + 6"i" - "i" - 2"i"^2)`

= `(2 + "i")/(3 + 5"i" - 2(-1))`  ...[∵ i2 = – 1]

= `(2 + "i")/(5 + 5"i")`

= `(2 + "i")/(5(1 + "i"))`

= `((2 + "i")(1 - "i"))/(5(1 + "i")(1 - "i"))`

= `(2 - 2"i" + "i" - "i"^2)/(5(1 - "i"^2)`

= `(2 - "i" - (-1))/(5[1 - (-1)]`  ...[∵ i2 = – 1]

= `(3- "i")/10`

∴ `(2 + "i")/((3 - "i")(1 + 2"i")) = 3/10 - 1/10"i"` 

∴ a = `3/10` and b = `(-1)/10`

shaalaa.com

Solution 2

`((2 + "i"))/((3 - "i")(1 + 2"i"))`

`= (2 + "i")/(3 + 6"i" - "i" - 2"i"^2)`

= `(2 + "i")/(3 + 5"i" - 2(-1))`             ...[∵ i2 = – 1]

= `(2 + "i")/(3 + 5"i" + 2)` 

= `(2 + "i")/(5 + 5"i")`

= `((2 + "i").(5 - 5"i"))/((5 + 5"i").(5 - 5"i"))`

= `(10 - 10"i" + 5"i" - 5"i"^2)/(5^2 - 5"i"^2)`

= `(10 - 10"i" + 5"i" - 5(-1))/(5^2 - 5"i"^2)`              ...[∵ i2 = – 1]

= `(10 - 10"i" + 5"i" + 5)/(5^2 - 5"i"^2)` 

= `(15 - 5"i")/(25 - 25(-1))`  

= `(15 - 5"i")/(25 +25)`  

= `(15 - 5"i")/(50)`  

= `15/50 - (5"i")/50`  

= `3/10 - (1"i")/10` 

∴ write in a + ib form

∴ a = `3/10` and b = `(-1)/10`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.1 [Page 6]

RELATED QUESTIONS

Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Evaluate the following:

i457


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Find the value of the following expression:

i30 + i80 + i120


Find the value of the following expression:

i5 + i10 + i15


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Find the real value of x and y, if

\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


Write 1 − i in polar form.


Write the argument of −i.


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


The argument of \[\frac{1 - i}{1 + i}\] is


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


Find a and b if (a – b) + (a + b)i = a + 5i


Find a and b if `1/("a" + "ib")` = 3 – 2i


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:

`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i93  


If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.


Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant

Show that `(-1 + sqrt3 "i")^3` is a real number.


Show that `(-1+ sqrt(3)i)^3` is a real number.


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×