English

The Least Positive Integer N Such that ( 2 I 1 + I ) N is a Positive Integer, Is. - Mathematics

Advertisements
Advertisements

Question

The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

Options

  •  16

  • 8

  • 4

  • 2

MCQ

Solution

\[8\]

\[\text { Let } z = \left( \frac{2i}{1 + i} \right)\]

\[ \Rightarrow z = \frac{2i}{1 + i} \times \frac{1 - i}{1 - i}\]

\[ \Rightarrow z = \frac{2i\left( 1 - i \right)}{1 - i^2}\]

\[ \Rightarrow z = \frac{2i\left( 1 - i \right)}{1 + 1} \left[ \because i^2 = - 1 \right]\]

\[ \Rightarrow z = \frac{2i\left( 1 - i \right)}{2}\]

\[ \Rightarrow z = i - i^2 \]

\[ \Rightarrow z = i + 1\]

\[\text { Now }, z^n = \left( 1 + i \right)^n \]

\[\text { For } n = 2, \]

\[ z^2 = \left( 1 + i \right)^2 \]

\[ = 1 + i^2 + 2i\]

\[ = 1 - 1 + 2i\]

\[ = 2i . . . (1) \]

\[\text { Since this is not a positive integer }, \]

\[\text { For } n = 4, \]

\[ z^4 = \left( 1 + i \right)^4 \]

\[ = \left[ \left( 1 + i \right)^2 \right]^2 \]

\[ = \left( 2i \right)^2 \left[ \text { Using } (1) \right] \]

\[ = 4 i^2 \]

\[ = - 4 . . . (2)\]

\[\text { This is a negative integer }. \]

\[\text { For } n = 8, \]

\[ z^8 = \left( 1 + i \right)^8 \]

\[ = \left[ \left( 1 + i \right)^4 \right]^2 \]

\[ = \left( - 4 \right)^2 \left[ \text { Using } (2) \right]\]

\[ = 16\]

\[\text { This is a positive integer } . \]

\[\text { Thus }, z = \left( \frac{2i}{1 + i} \right)^n\text {  is positive for } n = 8 . \]

\[\text { Therefore, 8 is the least positive integer such that } \left( \frac{2i}{1 + i} \right)^n\text {  is a positive integer } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.6 [Page 64]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.6 | Q 13 | Page 64

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`


Evaluate the following:

 \[\frac{1}{i^{58}}\]


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Find the value of the following expression:

i30 + i80 + i120


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


Solve the equation \[\left| z \right| = z + 1 + 2i\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]


Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .


Write 1 − i in polar form.


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]


Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].

Disclaimer: There is a misprinting in the question. It should be  \[\left( 1 + i\sqrt{3} \right)\]  instead of \[\left( 1 + \sqrt{3} \right)\].


If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if (a – b) + (a + b)i = a + 5i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((1 + "i")/(1 - "i"))^2`


Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:

`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`


Evaluate the following : i403 


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×