English

Write the Argument of ( 1 + I √ 3 ) ( 1 + I ) ( Cos θ + I Sin θ ) . Disclaimer: There is a Misprinting in the Question. It Should Be ( 1 + I √ 3 ) Instead of ( 1 + √ 3 ) . - Mathematics

Advertisements
Advertisements

Question

Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].

Disclaimer: There is a misprinting in the question. It should be  \[\left( 1 + i\sqrt{3} \right)\]  instead of \[\left( 1 + \sqrt{3} \right)\].

Solution

Let the argument of \[\left( 1 + i\sqrt{3} \right)\] be α. Then,

\[\tan\alpha = \frac{\sqrt{3}}{1} = \tan\frac{\pi}{3}\]

\[ \Rightarrow \alpha = \frac{\pi}{3}\]

Let the argument of \[\left( 1 + i \right)\] be β. Then,

\[\text { tan }\beta = \frac{1}{1} = \tan\frac{\pi}{4}\]

\[ \Rightarrow \beta = \frac{\pi}{4}\]

Let the argument of \[\left( cos\theta + isin\theta \right)\] be γ. Then,

\[\text { tan }\gamma = \frac{sin\theta}{cos\theta} = \text { tan }\theta\]

\[ \Rightarrow \gamma = \theta\]

∴ The argument of 

\[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( cos\theta + isin\theta \right) = \alpha + \beta + \gamma = \frac{\pi}{3} + \frac{\pi}{4} + \theta = \frac{7\pi}{12} + \theta\]

Hence, the argument of 

\[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( cos\theta + isin\theta \right) is \frac{7\pi}{12} + \theta\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.5 [Page 63]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.5 | Q 24 | Page 63

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: (1 – i)4


Evaluate: `[i^18 + (1/i)^25]^3`


Evaluate the following:

i457


Find the value of the following expression:

i49 + i68 + i89 + i110


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Express the following complex number in the standard form a + i b:

\[\frac{2 + 3i}{4 + 5i}\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


The polar form of (i25)3 is


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is 


Which of the following is correct for any two complex numbers z1 and z2?

 


Find a and b if abi = 3a − b + 12i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Evaluate the following : i116 


Evaluate the following : i403 


Evaluate the following : i–888 


Evaluate the following : i30 + i40 + i50 + i60 


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×