Advertisements
Advertisements
Question
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
Solution
Let the argument of \[\left( 1 + i\sqrt{3} \right)\] be α. Then,
\[\tan\alpha = \frac{\sqrt{3}}{1} = \tan\frac{\pi}{3}\]
\[ \Rightarrow \alpha = \frac{\pi}{3}\]
Let the argument of \[\left( 1 + i \right)\] be β. Then,
\[\text { tan }\beta = \frac{1}{1} = \tan\frac{\pi}{4}\]
\[ \Rightarrow \beta = \frac{\pi}{4}\]
Let the argument of \[\left( cos\theta + isin\theta \right)\] be γ. Then,
\[\text { tan }\gamma = \frac{sin\theta}{cos\theta} = \text { tan }\theta\]
\[ \Rightarrow \gamma = \theta\]
∴ The argument of
\[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( cos\theta + isin\theta \right) = \alpha + \beta + \gamma = \frac{\pi}{3} + \frac{\pi}{4} + \theta = \frac{7\pi}{12} + \theta\]
Hence, the argument of
\[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( cos\theta + isin\theta \right) is \frac{7\pi}{12} + \theta\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: (1 – i)4
Evaluate: `[i^18 + (1/i)^25]^3`
Evaluate the following:
i457
Find the value of the following expression:
i49 + i68 + i89 + i110
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
The polar form of (i25)3 is
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
Which of the following is correct for any two complex numbers z1 and z2?
Find a and b if abi = 3a − b + 12i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Evaluate the following : i116
Evaluate the following : i403
Evaluate the following : i–888
Evaluate the following : i30 + i40 + i50 + i60
Show that `(-1+sqrt3i)^3` is a real number.