Advertisements
Advertisements
Question
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Solution
\[\left( \frac{1 + i}{1 - i} \right)^n \]
\[ = \left[ \frac{1 + i}{1 - i} \times \left( \frac{1 + i}{1 + i} \right) \right]^n \]
\[ = \left( \frac{1 + i^2 + 2i}{1 - i^2} \right)^n \]
\[ = \left( \frac{1 - 1 + 2i}{1 + 1} \right)^n \]
\[ = \left( \frac{2i}{2} \right)^n \]
\[ = i^n \]
\[\text { For } i^n \text { to be real, the least positive value of n will be 2} . \]
\[\text { As } i^2 = - 1\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: (1 – i)4
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Evaluate the following : i116
Show that 1 + i10 + i20 + i30 is a real number
Answer the following:
Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.