Advertisements
Advertisements
Question
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
Options
1
−1
0
none of these
Solution
1
\[\text {Let } z = \frac{1 + i}{1 - i}\]
Rationalising the denominator:
\[z=\frac{1 + i}{1 - i}\times\frac{1 + i}{1 + i}\]
\[\Rightarrow z = \frac{1 + i^2 + 2i}{1 - i^2}\]
\[\Rightarrow z = \frac{2i}{2}\]
\[ \Rightarrow z = i\]
\[\Rightarrow z^4 = i^4 \]
\[\text { Since} i^2 = - 1,\text { we have }: \]
\[ \Rightarrow z^4 = i^2 \times i^2 \]
\[ \Rightarrow z^4 = 1\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: (1 – i)4
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Evaluate the following:
(ii) i528
Find the value of the following expression:
i30 + i80 + i120
Find the value of the following expression:
i5 + i10 + i15
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
The polar form of (i25)3 is
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
If z is a complex number, then
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : `1/"i"^58`
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
State True or False for the following:
The order relation is defined on the set of complex numbers.