English

If Z = a + I B Lies in Third Quadrant, Then ¯ Z Z Also Lies in Third Quadrant If - Mathematics

Advertisements
Advertisements

Question

If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if

Options

  • \[a > b > 0\]

  • \[a < b < 0\]

  • \[b < a < 0\]

  • \[b > a > 0\]

MCQ

Solution

Since, \[z = a + ib\] lies in third quadrant. \[\Rightarrow a < 0 \text { and } b < 0 . . . . (1)\]

Now,

\[\frac{\bar{z}}{z} = \frac{\bar{{a + ib}}}{a + ib}\]

\[ = \frac{a - ib}{a + ib}\]

\[ = \frac{a - ib}{a + ib} \times \frac{a - ib}{a - ib}\]

\[ = \frac{a^2 + i^2 b^2 - 2abi}{a^2 - i^2 b^2}\]

\[ = \frac{a^2 - b^2 - 2abi}{a^2 + b^2}\]

Since, 

\[\frac{\bar{z}}{z}\] also lies in third quadrant.

\[\Rightarrow a^2 - b^2 < 0\]

\[ \Rightarrow (a - b)(a + b) < 0\]

\[ \Rightarrow a - b > 0 \text { and  }a + b < 0\]

\[ \Rightarrow a > b . . . . (2)\]

From (1) and (2),

\[b < a < 0\]

Hence, the correct option is (c).

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.6 [Page 66]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.6 | Q 37 | Page 66

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: (1 – i)4


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Evaluate: `[i^18 + (1/i)^25]^3`


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Find the value of the following expression:

i30 + i80 + i120


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Solve the equation \[\left| z \right| = z + 1 + 2i\].


Write (i25)3 in polar form.


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.


Write 1 − i in polar form.


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


The principal value of the amplitude of (1 + i) is


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Find a and b if (a – b) + (a + b)i = a + 5i


Find a and b if `1/("a" + "ib")` = 3 – 2i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Evaluate the following : i888 


Evaluate the following : `1/"i"^58`


State True or False for the following:

2 is not a complex number.


Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×