Advertisements
Advertisements
Question
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
Options
\[a > b > 0\]
\[a < b < 0\]
\[b < a < 0\]
\[b > a > 0\]
Solution
Since, \[z = a + ib\] lies in third quadrant. \[\Rightarrow a < 0 \text { and } b < 0 . . . . (1)\]
Now,
\[\frac{\bar{z}}{z} = \frac{\bar{{a + ib}}}{a + ib}\]
\[ = \frac{a - ib}{a + ib}\]
\[ = \frac{a - ib}{a + ib} \times \frac{a - ib}{a - ib}\]
\[ = \frac{a^2 + i^2 b^2 - 2abi}{a^2 - i^2 b^2}\]
\[ = \frac{a^2 - b^2 - 2abi}{a^2 + b^2}\]
Since,
\[\frac{\bar{z}}{z}\] also lies in third quadrant.
\[\Rightarrow a^2 - b^2 < 0\]
\[ \Rightarrow (a - b)(a + b) < 0\]
\[ \Rightarrow a - b > 0 \text { and }a + b < 0\]
\[ \Rightarrow a > b . . . . (2)\]
From (1) and (2),
\[b < a < 0\]
Hence, the correct option is (c).
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: (1 – i)4
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Evaluate: `[i^18 + (1/i)^25]^3`
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Find the value of the following expression:
i30 + i80 + i120
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
Solve the equation \[\left| z \right| = z + 1 + 2i\].
Write (i25)3 in polar form.
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
Write 1 − i in polar form.
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
The principal value of the amplitude of (1 + i) is
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Find a and b if (a – b) + (a + b)i = a + 5i
Find a and b if `1/("a" + "ib")` = 3 – 2i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Evaluate the following : i888
Evaluate the following : `1/"i"^58`
State True or False for the following:
2 is not a complex number.
Match the statements of Column A and Column B.
Column A | Column B |
(a) The polar form of `i + sqrt(3)` is | (i) Perpendicular bisector of segment joining (–2, 0) and (2, 0). |
(b) The amplitude of `-1 + sqrt(-3)` is | (ii) On or outside the circle having centre at (0, –4) and radius 3. |
(c) If |z + 2| = |z − 2|, then locus of z is | (iii) `(2pi)/3` |
(d) If |z + 2i| = |z − 2i|, then locus of z is | (iv) Perpendicular bisector of segment joining (0, –2) and (0, 2). |
(e) Region represented by |z + 4i| ≥ 3 is | (v) `2(cos pi/6 + i sin pi/6)` |
(f) Region represented by |z + 4| ≤ 3 is | (vi) On or inside the circle having centre (–4, 0) and radius 3 units. |
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in | (vii) First quadrant |
(h) Reciprocal of 1 – i lies in | (viii) Third quadrant |