Advertisements
Advertisements
Question
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Solution
\[\frac{\left( 2 + i \right)^3}{2 + 3i}\]
\[ = \frac{\left( 4 + i^2 + 4i \right)\left( 2 + i \right)}{2 + 3i} \left( \because i^2 = - 1 \right)\]
\[ = \frac{8 + 2 i^2 + 8i + 4i + i^3 + 4 i^2}{2 + 3i} \]
\[ = \frac{2 + 11i}{2 + 3i} \times \frac{2 - 3i}{2 - 3i}\]
\[ = \frac{4 - 6i + 22i - 33 i^2}{4 - 9 i^2}\]
\[ = \frac{37 + 16i}{4 + 9}\]
\[ = \frac{37}{13} + \frac{16}{13}i\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Find the value of the following expression:
i5 + i10 + i15
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
The polar form of (i25)3 is
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
The argument of \[\frac{1 - i}{1 + i}\] is
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Find a and b if a + 2b + 2ai = 4 + 6i
Find a and b if `1/("a" + "ib")` = 3 – 2i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i93
Evaluate the following : i116
Evaluate the following : `1/"i"^58`
Evaluate the following : i–888
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8
Show that `(-1+ sqrt(3)i)^3` is a real number.