English

If ( 1 + I ) 2 2 − I = X + I Y Find X + Y. - Mathematics

Advertisements
Advertisements

Question

If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.

Solution

\[\frac{\left( 1 + i \right)^2}{2 - i} = \frac{1^2 + i^2 + 2i}{2 - i}\]

\[ = \frac{1 - 1 + 2i}{2 - i} [ \because i^2 = - 1]\]

\[ = \frac{2i}{2 - 1} \times \frac{2 + i}{2 + i} \]

\[ = \frac{2i(2 + i)}{2^2 - i^2}\]

\[ = \frac{4i + 2 i^2}{4 + 1} [ \because i^2 = - 1]\]

\[ = \frac{4i - 2}{5}\]

\[ = \frac{- 2}{5} + \frac{4}{5}i . . . . (1)\]

It is given that,

\[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]

\[ \Rightarrow - \frac{2}{5} + \frac{4}{5}i = x + iy [\text { From }(1)]\]

\[ \Rightarrow x = - \frac{2}{5} \text { and } y = \frac{4}{5}\]

\[\therefore x + y = \frac{- 2}{5} + \frac{4}{5}\]

\[ = \frac{2}{5}\]

Thus, x + y = \[\frac{2}{5}\].

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.2 [Page 32]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.2 | Q 13 | Page 32

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


Evaluate the following:

 \[\frac{1}{i^{58}}\]


Evaluate the following:

\[i^{49} + i^{68} + i^{89} + i^{110}\]


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

i49 + i68 + i89 + i110


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


The amplitude of \[\frac{1}{i}\] is equal to


The value of \[(1 + i )^4 + (1 - i )^4\] is


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if a + 2b + 2ai = 4 + 6i


Find a and b if `1/("a" + "ib")` = 3 – 2i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


State True or False for the following:

2 is not a complex number.


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×