Advertisements
Advertisements
Question
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
Solution
\[\frac{\left( 1 + i \right)^2}{2 - i} = \frac{1^2 + i^2 + 2i}{2 - i}\]
\[ = \frac{1 - 1 + 2i}{2 - i} [ \because i^2 = - 1]\]
\[ = \frac{2i}{2 - 1} \times \frac{2 + i}{2 + i} \]
\[ = \frac{2i(2 + i)}{2^2 - i^2}\]
\[ = \frac{4i + 2 i^2}{4 + 1} [ \because i^2 = - 1]\]
\[ = \frac{4i - 2}{5}\]
\[ = \frac{- 2}{5} + \frac{4}{5}i . . . . (1)\]
It is given that,
\[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]
\[ \Rightarrow - \frac{2}{5} + \frac{4}{5}i = x + iy [\text { From }(1)]\]
\[ \Rightarrow x = - \frac{2}{5} \text { and } y = \frac{4}{5}\]
\[\therefore x + y = \frac{- 2}{5} + \frac{4}{5}\]
\[ = \frac{2}{5}\]
Thus, x + y = \[\frac{2}{5}\].
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Evaluate the following:
\[\frac{1}{i^{58}}\]
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
The amplitude of \[\frac{1}{i}\] is equal to
The value of \[(1 + i )^4 + (1 - i )^4\] is
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Find a and b if a + 2b + 2ai = 4 + 6i
Find a and b if `1/("a" + "ib")` = 3 – 2i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
State True or False for the following:
2 is not a complex number.
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.