Advertisements
Advertisements
Question
Show that 1 + i10 + i20 + i30 is a real number.
Solution
\[1 + i^{10} + i^{20} + i^{30} \]
\[ = 1 + i^{4 \times 2 + 2} + i^{4 \times 5} + i^{4 \times 7 + 2} \]
\[ = 1 + \left[ \left( i^4 \right)^2 \times i^2 \right] + \left( i^4 \right)^5 + \left[ \left( i^4 \right)^7 \times i^2 \right]\]
\[ = 1 + i^2 + 1 + i^2 \left( \because i^4 = 1 \right)\]
\[ = 1 - 1 + 1 - 1 \left( \because i^2 = - 1 \right)\]
\[ = 0\]
\[\text { This is a real number} . \]
\[\text { Hence proved } .\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)
Evaluate the following:
\[\frac{1}{i^{58}}\]
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Solve the equation \[\left| z \right| = z + 1 + 2i\].
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
Write 1 − i in polar form.
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Show that `(-1 + sqrt(3)"i")^3` is a real number
Evaluate the following : i403
Evaluate the following : i–888
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
Show that `(-1+sqrt3i)^3` is a real number.