Advertisements
Advertisements
प्रश्न
Show that 1 + i10 + i20 + i30 is a real number.
उत्तर
\[1 + i^{10} + i^{20} + i^{30} \]
\[ = 1 + i^{4 \times 2 + 2} + i^{4 \times 5} + i^{4 \times 7 + 2} \]
\[ = 1 + \left[ \left( i^4 \right)^2 \times i^2 \right] + \left( i^4 \right)^5 + \left[ \left( i^4 \right)^7 \times i^2 \right]\]
\[ = 1 + i^2 + 1 + i^2 \left( \because i^4 = 1 \right)\]
\[ = 1 - 1 + 1 - 1 \left( \because i^2 = - 1 \right)\]
\[ = 0\]
\[\text { This is a real number} . \]
\[\text { Hence proved } .\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: (1 – i)4
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Find the value of the following expression:
i30 + i80 + i120
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Find the multiplicative inverse of the following complex number:
1 − i
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
The polar form of (i25)3 is
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
The amplitude of \[\frac{1}{i}\] is equal to
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
If z is a complex number, then
Which of the following is correct for any two complex numbers z1 and z2?
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Find a and b if a + 2b + 2ai = 4 + 6i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Evaluate the following : i93
Show that 1 + i10 + i20 + i30 is a real number
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
State True or False for the following:
The order relation is defined on the set of complex numbers.
Show that `(-1+ sqrt(3)i)^3` is a real number.