हिंदी

Evaluate the Following: 2 X 4 + 5 X 3 + 7 X 2 − X + 41 , When X = − 2 − √ 3 I - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]

उत्तर

\[x = - 2 - \sqrt{3}i\]

\[ \Rightarrow x^2 = \left( - 2 - \sqrt{3}i \right)^2 \]

\[ = ( - 2 )^2 + ( - \sqrt{3}i )^2 + 2( - 2)( - \sqrt{3}i)\]

\[ = 4 + 3 i^2 + 4\sqrt{3}i\]

\[ = 4 - 3 + 4\sqrt{3}i [ \because i^2 = - 1]\]

\[ = 1 + 4\sqrt{3}i\]

\[ \Rightarrow x^3 = \left( 1 + 4\sqrt{3}i \right) \times \left( - 2 - \sqrt{3}i \right)\]

\[ = - 2 - \sqrt{3}i - 8\sqrt{3}i - 12 i^2 \]

\[ = 10 - 9\sqrt{3}i [ \because i^2 = - 1]\]

\[ \Rightarrow x^4 = \left( 1 + 4\sqrt{3}i \right)^2 \]

\[ = 1 + 48 i^2 + 8\sqrt{3}i\]

\[ = - 47 + 8\sqrt{3}i [ \because i^2 = - 1]\]

\[ \Rightarrow 2 x^4 + 5 x^3 + 7 x^2 - x + 41 = 2( - 47 + 8\sqrt{3}i ) + 5\left( 10 - 9\sqrt{3}i \right) + 7\left( 1 + 4\sqrt{3}i \right) - \left( - 2 - \sqrt{3}i \right) + 41\]

\[ = - 94 + 16\sqrt{3}i + 50 - 45\sqrt{3}i + 7 + 28\sqrt{3}i + 2 + \sqrt{3}i + 41\]

\[ = 6\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.2 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.2 | Q 16.5 | पृष्ठ ३२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Find the value of the following expression:

i49 + i68 + i89 + i110


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


The polar form of (i25)3 is


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


The principal value of the amplitude of (1 + i) is


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


The amplitude of \[\frac{1}{i}\] is equal to


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


If z is a complex numberthen


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Find a and b if abi = 3a − b + 12i


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Show that `(-1 + sqrt(3)"i")^3` is a real number


Show that 1 + i10 + i20 + i30 is a real number


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×