हिंदी

If F ( Z ) = 7 − Z 1 − Z 2 , Where Z = 1 + 2 I Then | F ( Z ) | is - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is

विकल्प

  • \[\frac{\left| z \right|}{2}\] 

  • \[\left| z \right|\]

  • \[2\left| z \right|\]

  • none of these

MCQ

उत्तर

\[f\left( z \right) = \frac{7 - z}{1 - z^2}\]

\[ = \frac{7 - \left( 1 + 2i \right)}{1 - \left( 1 + 2i \right)^2}\]

\[ = \frac{7 - 1 - 2i}{1 - \left( 1^2 + 2^2 i^2 + 4i \right)}\]

\[ = \frac{6 - 2i}{1 - 1 + 4 - 4i}\]

\[ = \frac{6 - 2i}{4 - 4i}\]

\[ = \frac{6 - 2i}{4 - 4i} \times \frac{4 + 4i}{4 + 4i}\]

\[ = \frac{24 + 24i - 8i - 8 i^2}{4^2 - 4^2 i^2}\]

\[ = \frac{24 + 16i + 8}{16 + 16}\]

\[ = \frac{32 + 16i}{32}\]

\[ = 1 + \frac{1}{2}i\]

Since 

\[z = 1 + 2i\],

\[\therefore \left| z \right| = \sqrt{\left( 1 \right)^2 + \left( 2 \right)^2}\]

\[ = \sqrt{1 + 4}\]

\[ = \sqrt{5}\]

\[\therefore \left| f\left( z \right) \right| = \sqrt{\left( 1 \right)^2 + \left( \frac{1}{2} \right)^2}\]

\[ = \sqrt{1 + \frac{1}{4}}\]

\[ = \frac{\sqrt{5}}{2}\]

\[ = \frac{\left| z \right|}{2}\]

Hence, the correct answer is option (a).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.6 | Q 38 | पृष्ठ ६६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: (1 – i)4


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Evaluate: `[i^18 + (1/i)^25]^3`


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Evaluate the following:

(ii) i528


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


Find the multiplicative inverse of the following complex number:

1 − i


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


Solve the equation \[\left| z \right| = z + 1 + 2i\].


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


The amplitude of \[\frac{1}{i}\] is equal to


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


Which of the following is correct for any two complex numbers z1 and z2?

 


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Evaluate the following : `1/"i"^58`


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×