मराठी

If F ( Z ) = 7 − Z 1 − Z 2 , Where Z = 1 + 2 I Then | F ( Z ) | is - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is

पर्याय

  • \[\frac{\left| z \right|}{2}\] 

  • \[\left| z \right|\]

  • \[2\left| z \right|\]

  • none of these

MCQ

उत्तर

\[f\left( z \right) = \frac{7 - z}{1 - z^2}\]

\[ = \frac{7 - \left( 1 + 2i \right)}{1 - \left( 1 + 2i \right)^2}\]

\[ = \frac{7 - 1 - 2i}{1 - \left( 1^2 + 2^2 i^2 + 4i \right)}\]

\[ = \frac{6 - 2i}{1 - 1 + 4 - 4i}\]

\[ = \frac{6 - 2i}{4 - 4i}\]

\[ = \frac{6 - 2i}{4 - 4i} \times \frac{4 + 4i}{4 + 4i}\]

\[ = \frac{24 + 24i - 8i - 8 i^2}{4^2 - 4^2 i^2}\]

\[ = \frac{24 + 16i + 8}{16 + 16}\]

\[ = \frac{32 + 16i}{32}\]

\[ = 1 + \frac{1}{2}i\]

Since 

\[z = 1 + 2i\],

\[\therefore \left| z \right| = \sqrt{\left( 1 \right)^2 + \left( 2 \right)^2}\]

\[ = \sqrt{1 + 4}\]

\[ = \sqrt{5}\]

\[\therefore \left| f\left( z \right) \right| = \sqrt{\left( 1 \right)^2 + \left( \frac{1}{2} \right)^2}\]

\[ = \sqrt{1 + \frac{1}{4}}\]

\[ = \frac{\sqrt{5}}{2}\]

\[ = \frac{\left| z \right|}{2}\]

Hence, the correct answer is option (a).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.6 | Q 38 | पृष्ठ ६६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Evaluate the following:

\[i^{49} + i^{68} + i^{89} + i^{110}\]


Find the value of the following expression:

i30 + i80 + i120


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]


Find the multiplicative inverse of the following complex number:

1 − i


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]


Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.


Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].

Disclaimer: There is a misprinting in the question. It should be  \[\left( 1 + i\sqrt{3} \right)\]  instead of \[\left( 1 + \sqrt{3} \right)\].


The polar form of (i25)3 is


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


The principal value of the amplitude of (1 + i) is


\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


The argument of \[\frac{1 - i}{1 + i}\] is


If z is a complex numberthen


Find a and b if a + 2b + 2ai = 4 + 6i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Evaluate the following : i116 


If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


State True or False for the following:

The order relation is defined on the set of complex numbers.


Show that `(-1 + sqrt3 "i")^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×