Advertisements
Advertisements
प्रश्न
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
पर्याय
\[\frac{\left| z \right|}{2}\]
\[\left| z \right|\]
\[2\left| z \right|\]
none of these
उत्तर
\[f\left( z \right) = \frac{7 - z}{1 - z^2}\]
\[ = \frac{7 - \left( 1 + 2i \right)}{1 - \left( 1 + 2i \right)^2}\]
\[ = \frac{7 - 1 - 2i}{1 - \left( 1^2 + 2^2 i^2 + 4i \right)}\]
\[ = \frac{6 - 2i}{1 - 1 + 4 - 4i}\]
\[ = \frac{6 - 2i}{4 - 4i}\]
\[ = \frac{6 - 2i}{4 - 4i} \times \frac{4 + 4i}{4 + 4i}\]
\[ = \frac{24 + 24i - 8i - 8 i^2}{4^2 - 4^2 i^2}\]
\[ = \frac{24 + 16i + 8}{16 + 16}\]
\[ = \frac{32 + 16i}{32}\]
\[ = 1 + \frac{1}{2}i\]
Since
\[z = 1 + 2i\],
\[\therefore \left| z \right| = \sqrt{\left( 1 \right)^2 + \left( 2 \right)^2}\]
\[ = \sqrt{1 + 4}\]
\[ = \sqrt{5}\]
\[\therefore \left| f\left( z \right) \right| = \sqrt{\left( 1 \right)^2 + \left( \frac{1}{2} \right)^2}\]
\[ = \sqrt{1 + \frac{1}{4}}\]
\[ = \frac{\sqrt{5}}{2}\]
\[ = \frac{\left| z \right|}{2}\]
Hence, the correct answer is option (a).
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Find the value of the following expression:
i30 + i80 + i120
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Find the multiplicative inverse of the following complex number:
1 − i
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
The polar form of (i25)3 is
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
The principal value of the amplitude of (1 + i) is
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
The argument of \[\frac{1 - i}{1 + i}\] is
If z is a complex number, then
Find a and b if a + 2b + 2ai = 4 + 6i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Evaluate the following : i116
If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
State True or False for the following:
The order relation is defined on the set of complex numbers.
Show that `(-1 + sqrt3 "i")^3` is a real number.