Advertisements
Advertisements
प्रश्न
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
उत्तर
We have `((1 - i)/(1 + i))^100` = a + bi
⇒ `((1 - i)/(1 + i) xx (1 - i)/(1 - i))^100` = a + bi
⇒ `((1 + i^2 - 2i)/(1 - i^2))^100` = a + bi
⇒ `((1 - 1 - 2i)/(1 + 1))^100` = a + bi
⇒ `((-2i)/2)^100` = a + bi
⇒ (–i)100 = a + bi
⇒ i100 = a + bi
⇒ (i4)25 = a + bi
⇒ (1)25 = a + bi
⇒ 1 = a + bi
⇒ 1 + 0i = a + bi
Comparing the real and imaginary parts,
We have a = 1, b = 0
Hence (a, b) = (1, 0)
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Find the value of the following expression:
i + i2 + i3 + i4
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Find the value of the following expression:
(1 + i)6 + (1 − i)3
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
Solve the equation \[\left| z \right| = z + 1 + 2i\].
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
Write (i25)3 in polar form.
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
Write −1 + i \[\sqrt{3}\] in polar form .
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Show that `(-1 + sqrt(3)"i")^3` is a real number