मराठी

Solve the Equation | Z | = Z + 1 + 2 I . - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the equation \[\left| z \right| = z + 1 + 2i\].

उत्तर

Let \[z = x + iy\]

Then,

\[\left| z \right| = \sqrt{x^2 + y^2}\]

\[\therefore \left| z \right| = z + 1 + 2i\]

\[ \Rightarrow \sqrt{x^2 + y^2} = \left( x + iy \right) + 1 + 2i\]

\[ \Rightarrow \sqrt{x^2 + y^2} = \left( x + 1 \right) + i\left( y + 2 \right)\]

\[ \Rightarrow \sqrt{x^2 + y^2} = \left( x + 1 \right) \text { and } y + 2 = 0\]

\[ \Rightarrow x^2 + y^2 = \left( x + 1 \right)^2 \text { and } y = - 2\]

\[ \Rightarrow x^2 + y^2 = x^2 + 1 + 2x \text { and } y = - 2\]

\[ \Rightarrow y^2 = 2x + 1\text {  and } y = - 2\]

\[ \Rightarrow 4 = 2x + 1 \text { and } y = - 2\]

\[ \Rightarrow 2x = 3 \text { and } y = - 2\]

\[ \Rightarrow x = \frac{3}{2} \text { and } y = - 2\]

\[\therefore z = x + iy = \frac{3}{2} - 2i\]

​Thus, 

\[z = \frac{3}{2} - 2i\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.2 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.2 | Q 23 | पृष्ठ ३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Express the following complex number in the standard form a + i b:

\[\frac{2 + 3i}{4 + 5i}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


Write −1 + \[\sqrt{3}\] in polar form .


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


The polar form of (i25)3 is


If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


The argument of \[\frac{1 - i}{1 + i}\] is


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Evaluate the following : i403 


Match the statements of column A and B.

Column A Column B
(a) The value of 1 + i2 + i4 + i6 + ... i20 is (i) purely imaginary complex number
(b) The value of `i^(-1097)` is (ii) purely real complex number
(c) Conjugate of 1 + i lies in (iii) second quadrant
(d) `(1 + 2i)/(1 - i)` lies in (iv) Fourth quadrant
(e) If a, b, c ∈ R and b2 – 4ac < 0, then
the roots of the equation ax2 + bx + c = 0
are non real (complex) and
(v) may not occur in conjugate pairs
(f) If a, b, c ∈ R and b2 – 4ac > 0, and
b2 – 4ac is a perfect square, then the
roots of the equation ax2 + bx + c = 0
(vi) may occur in conjugate pairs

State True or False for the following:

2 is not a complex number.


Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×