मराठी

Express the Following Complex Number in the Standard Form a + I B: 2 + 3 I 4 + 5 I - Mathematics

Advertisements
Advertisements

प्रश्न

Express the following complex number in the standard form a + i b:

\[\frac{2 + 3i}{4 + 5i}\]

उत्तर

\[ \frac{2 + 3i}{4 + 5i}\]

\[ = \frac{2 + 3i}{4 + 5i} \times \frac{4 - 5i}{4 - 5i}\]

\[ = \frac{8 - 10i + 12i - 15 i^2}{16 - 25 i^2} \left( \because i^2 = - 1 \right)\]

\[ = \frac{23 + 2i}{16 + 25}\]

\[ = \frac{23}{41} + \frac{2}{41}i\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.2 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.2 | Q 1.07 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Evaluate the following:

(ii) i528


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

i5 + i10 + i15


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


Write 1 − i in polar form.


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


The principal value of the amplitude of (1 + i) is


\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


If z is a complex numberthen


Which of the following is correct for any two complex numbers z1 and z2?

 


Find a and b if abi = 3a − b + 12i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


Evaluate the following : i888 


Evaluate the following : i93  


Evaluate the following : `1/"i"^58`


Evaluate the following : i–888 


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


State True or False for the following:

2 is not a complex number.


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×