Advertisements
Advertisements
प्रश्न
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
उत्तर
\[ \frac{2 + 3i}{4 + 5i}\]
\[ = \frac{2 + 3i}{4 + 5i} \times \frac{4 - 5i}{4 - 5i}\]
\[ = \frac{8 - 10i + 12i - 15 i^2}{16 - 25 i^2} \left( \because i^2 = - 1 \right)\]
\[ = \frac{23 + 2i}{16 + 25}\]
\[ = \frac{23}{41} + \frac{2}{41}i\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Evaluate the following:
(ii) i528
Evaluate the following:
\[\frac{1}{i^{58}}\]
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Find the value of the following expression:
i30 + i80 + i120
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
The principal value of the amplitude of (1 + i) is
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
The amplitude of \[\frac{1}{i}\] is equal to
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i35
Evaluate the following : i93
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.