हिंदी

Find the Number of Solutions of Z 2 + | Z | 2 = 0 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].

उत्तर

Let \[z = x + iy\].

Then,

\[\left| z \right| = \sqrt{x^2 + y^2}\]

\[\therefore z^2 + \left| z \right|^2 = 0\]

\[ \Rightarrow \left( x + iy \right)^2 + \left( \sqrt{x^2 + y^2} \right)^2 = 0\]

\[ \Rightarrow x^2 + i^2 y^2 + 2ixy + x^2 + y^2 = 0\]

\[ \Rightarrow x^2 - y^2 + 2ixy + x^2 + y^2 = 0\]

\[ \Rightarrow 2 x^2 + 2ixy = 0\]

\[ \Rightarrow 2x(x + iy) = 0\]

\[ \Rightarrow x = 0 \text { or } x + iy = 0\]

\[ \Rightarrow x = 0 \text { or } z = 0\]

For

\[x = 0, z = 0 + iy\]

​Thus, there are infinitely many solutions of the form 

\[z = 0 + iy, y \in R\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.2 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.2 | Q 26 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

 \[\frac{1}{i^{58}}\]


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Find the value of the following expression:

i5 + i10 + i15


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


Write 1 − i in polar form.


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


The polar form of (i25)3 is


If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


The amplitude of \[\frac{1}{i}\] is equal to


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


If z is a complex numberthen


Which of the following is correct for any two complex numbers z1 and z2?

 


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i30 + i40 + i50 + i60 


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


Show that `(-1 + sqrt3 "i")^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×