Advertisements
Advertisements
प्रश्न
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
विकल्प
0
1
−1
none of these
उत्तर
none of these
\[\left( x + iy \right)^\frac{1}{3} = a + ib\]
\[\text { Cubing on both the sides, we get }: \]
\[x + iy = \left( a + ib \right)^3 \]
\[ \Rightarrow x + iy = a^3 + \left( ib \right)^3 + 3 a^2 bi + 3a \left( ib \right)^2 \]
\[ \Rightarrow x + iy = a^3 + i^3 b^3 + 3 a^2 ib + 3 i^2 a b^2 \]
\[ \Rightarrow x + iy = a^3 - i b^3 + 3 a^2 ib - 3a b^2 ( \because i^2 = - 1, i^3 = - i)\]
\[ \Rightarrow x + iy = a^3 - 3a b^2 + i\left( - b^3 + 3 a^2 b \right)\]
\[ \therefore x = a^3 - 3a b^2 \text { and }y = 3 a^2 b - b^3 \]
\[or , \frac{x}{a} = a^2 - 3 b^2\text { and } \frac{y}{b} = 3 a^2 - b^2 \]
\[ \Rightarrow \frac{x}{a} + \frac{y}{b} = a^2 - 3 b^2 + 3 a^2 - b^2 \]
\[ \Rightarrow \frac{x}{a} + \frac{y}{b} = 4 a^2 - 4 b^2\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
Write −1 + i \[\sqrt{3}\] in polar form .
Write the argument of −i.
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
The amplitude of \[\frac{1}{i}\] is equal to
The argument of \[\frac{1 - i}{1 + i}\] is
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Find a and b if (a – b) + (a + b)i = a + 5i
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Evaluate the following : i–888
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`