Advertisements
Advertisements
प्रश्न
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
उत्तर
\[\frac{i^{4n + 1} - i^{4n - 1}}{2}\]
\[ = \frac{i - \frac{1}{i}}{2} \left( \because i^{4n} = 1, i^{- 1} = \frac{1}{i} \right)\]
\[ = \frac{\frac{i^2 - 1}{i}}{2}\]
\[ = \frac{i^2 - 1}{2i}\]
\[ = \frac{- 1 - 1}{2i}\]
\[ = \frac{- 2}{- 2i} \]
\[ = \frac{- 1}{i}\]
\[ = \frac{- i}{i^2} \left( \because i^2 = - 1 \right)\]
\[ = \frac{- i}{- 1}\]
\[ = i\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: (1 – i)4
Evaluate: `[i^18 + (1/i)^25]^3`
Evaluate the following:
(ii) i528
Evaluate the following:
\[\frac{1}{i^{58}}\]
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
i30 + i80 + i120
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
Write the argument of −i.
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
Which of the following is correct for any two complex numbers z1 and z2?
Find a and b if a + 2b + 2ai = 4 + 6i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Evaluate the following : i116
Evaluate the following : i30 + i40 + i50 + i60
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.
If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.
State True or False for the following:
2 is not a complex number.