Advertisements
Advertisements
प्रश्न
If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.
उत्तर
Given that: a = cosθ + isinθ
∴ `(1 + a)/(1 - a) = (1 + cos theta + i sin theta)/(1 - cos theta - i sin theta)`
= `(1 + cos theta + i sin theta)/(1 - cos theta - i sin theta) xx (1 - cos theta + i sin theta)/(1 - cos theta + i sin theta)`
= `(1 - cos theta + i sin theta + cos theta - cos^2 theta + i sin theta cos theta + i sin theta - i sin theta cos theta + i^2 sin^2 theta)/((1 - cos theta)^2 - i^2 sin^2 theta)`
= `(1 + i sin theta - cos^2 theta + i sin theta - sin^2 theta)/(1 + cos^2 theta - 2 cos theta + sin^2 theta)`
= `(sin^2 theta + 2i sin theta - sin^2 theta)/(1 + 1 - 2 cos theta)`
= `(2i sin theta)/(2 - 2 cos theta)`
= `(2i sin theta)/(2(1 - cos theta))`
= `(i sin theta)/(1 - cos theta)`
= `(2 sin theta/2 cos theta/2.i)/(2sin^2 theta/2)`
= `cot theta/2 . i`
Hence, `(1 + a)/(1 - a) = icot theta/2`.
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib:
`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`
Express the given complex number in the form a + ib: (1 – i)4
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Show that `(-1 + sqrt(3)"i")^3` is a real number
Evaluate the following : i93
Evaluate the following : i116
Show that 1 + i10 + i20 + i30 is a real number
Show that `(-1 + sqrt3 "i")^3` is a real number.