हिंदी

Show that 1 + i10 + i20 + i30 is a real number - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Show that 1 + i10 + i20 + i30 is a real number

योग

उत्तर

1 + i10 + i20 + i30 

= 1 + (i4)2.i2 + (i4)5 + (i4)7.i2

= 1 + (1)2 (–1) + (1)5 + (1)7 (–1)   ...[∵ i4 = 1, i2 = – 1]

= 1 – 1 + 1 – 1

= 0, which is a real number.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Complex Numbers - Exercise 1.1 [पृष्ठ ६]

APPEARS IN

संबंधित प्रश्न

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)


Express the given complex number in the form a + ib: (1 – i)4


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

\[i^{49} + i^{68} + i^{89} + i^{110}\]


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Find the real value of x and y, if

\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]


Find the multiplicative inverse of the following complex number:

1 − i


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


Write the argument of −i.


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


The principal value of the amplitude of (1 + i) is


If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if `1/("a" + "ib")` = 3 – 2i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Evaluate the following : i35 


Evaluate the following : i403 


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


State True or False for the following:

The order relation is defined on the set of complex numbers.


Show that `(-1 + sqrt3 "i")^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×