हिंदी

State True or False for the following: The order relation is defined on the set of complex numbers. - Mathematics

Advertisements
Advertisements

प्रश्न

State True or False for the following:

The order relation is defined on the set of complex numbers.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is False.

Explanation:

Comparison of two purely imaginary complex numbers is not possible. However, the two purely real complex numbers can be compared.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Exercise | Q 26.(i) | पृष्ठ ९३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`


Evaluate: `[i^18 + (1/i)^25]^3`


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Express the following complex number in the standard form a + i b:

\[(1 + i)(1 + 2i)\]


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


The polar form of (i25)3 is


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i116 


Answer the following:

Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.


Match the statements of column A and B.

Column A Column B
(a) The value of 1 + i2 + i4 + i6 + ... i20 is (i) purely imaginary complex number
(b) The value of `i^(-1097)` is (ii) purely real complex number
(c) Conjugate of 1 + i lies in (iii) second quadrant
(d) `(1 + 2i)/(1 - i)` lies in (iv) Fourth quadrant
(e) If a, b, c ∈ R and b2 – 4ac < 0, then
the roots of the equation ax2 + bx + c = 0
are non real (complex) and
(v) may not occur in conjugate pairs
(f) If a, b, c ∈ R and b2 – 4ac > 0, and
b2 – 4ac is a perfect square, then the
roots of the equation ax2 + bx + c = 0
(vi) may occur in conjugate pairs

If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


State True or False for the following:

2 is not a complex number.


Show that `(-1 + sqrt3 "i")^3` is a real number.


Show that `(-1+ sqrt(3)i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×