हिंदी

Evaluate: [i18+(1i)25]3 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `[i^18 + (1/i)^25]^3`

योग

उत्तर

`[i^18 + (1/i)^25]^3 = [(i^2)^9 +  1 /((i^2)^12 i)]^3`

= ` [(-1)^9 +  1 /((-1)^12 i)]^3`

= `[ -1  + 1/i  xx  i/i]^3`

= `[- 1 -i]^3 = - (1 + i)^3`

Now, `[ (a + b)^3 = [a^3 + 3a^2b + 3ab^2 + b^3]`

= - (1 + 3i + 3i2 + i2)

= - (1 + 3i - 3 + i2 .i )

= (- 2 + 3i – i)

= – (- 2 + 2i)

= 2 – 2i

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Miscellaneous Exercise [पृष्ठ ११२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Miscellaneous Exercise | Q 1 | पृष्ठ ११२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Show that 1 + i10 + i20 + i30 is a real number.


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].


Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is 


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


If z is a complex numberthen


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Evaluate the following : i888 


Show that 1 + i10 + i20 + i30 is a real number


State True or False for the following:

2 is not a complex number.


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Show that `(-1 + sqrt3 "i")^3` is a real number.


Show that `(-1+ sqrt(3)i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×