हिंदी

The real value of θ for which the expression 1+icosθ1-2icosθ is a real number is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.

विकल्प

  • `npi + pi/4`

  • `npi + (-1)n  pi/4`

  • `2npi +-  pi/2`

  • None of these

MCQ
रिक्त स्थान भरें

उत्तर

The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is `underlinebb(2npi +-  pi/2)`.

Explanation:

Let z = `(1 + i cos theta)/(1 - 2i cos theta)`

= `(1 + i cos theta)/(1 - 2i cos theta) xx (1 + 2i cos theta)/(1 + 2i cos theta)`

= `(1 + 2i cos theta + i cos theta + 2i^2 cos^2 theta)/(1 - 4i^2 cos^2 theta)`

= `(1 + 3i cos theta - 2 cos^2 theta)/(1 + 4 cos^2 theta)`

= `(1 - 2 cos^2 theta)/(1 + 4 cos^2 theta) + (3 cos theta)/(1 + 4 cos^2 theta)i`

If z is a real number, then

`(3 cos theta)/(1 + 4cos^2 theta)` = 0

⇒ 3cosθ = 0

⇒ cosθ = 0

∴ θ = `2npi +-  pi/2`, n ∈ N.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Exercise | Q 48 | पृष्ठ ९७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: i–39


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Evaluate the following:

 \[\frac{1}{i^{58}}\]


Evaluate the following:

\[i^{49} + i^{68} + i^{89} + i^{110}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


Solve the equation \[\left| z \right| = z + 1 + 2i\].


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


The principal value of the amplitude of (1 + i) is


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


The amplitude of \[\frac{1}{i}\] is equal to


The value of \[(1 + i )^4 + (1 - i )^4\] is


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


Find a and b if (a – b) + (a + b)i = a + 5i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((1 + "i")/(1 - "i"))^2`


Evaluate the following : i35 


Evaluate the following : i403 


Evaluate the following : i–888 


Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×