Advertisements
Advertisements
प्रश्न
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
विकल्प
\[2 \sin\frac{\theta}{2}\]
\[2 \cos\frac{\theta}{2}\]
\[2\left| \sin\frac{\theta}{2} \right|\]
\[2\left| \cos\frac{\theta}{2} \right|\]
उत्तर
\[2\left| \sin\frac{\theta}{2} \right|\]
\[\because z = 1 - \cos\theta + i \sin\theta\]
\[ \Rightarrow \left| z \right| = \sqrt{\left( 1 - \cos\theta \right)^2 + \sin^2 \theta}\]
\[ \Rightarrow \left| z \right| = \sqrt{1 + \cos^2 \theta - 2\cos\theta + \sin^2 \theta}\]
\[ \Rightarrow \left| z \right| = \sqrt{1 + 1 - 2\cos\theta}\]
\[ \Rightarrow \left| z \right| = \sqrt{2\left( 1 - \cos\theta \right)}\]
\[ \Rightarrow \left| z \right| = \sqrt{4 \sin^2 \frac{\theta}{2}}\]
\[ \Rightarrow \left| z \right|=2\left| \sin\frac{\theta}{2} \right|\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
i30 + i80 + i120
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
Write (i25)3 in polar form.
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Find a and b if abi = 3a − b + 12i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i888
Evaluate the following : i116
State True or False for the following:
The order relation is defined on the set of complex numbers.
State True or False for the following:
2 is not a complex number.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8
Show that `(-1+ sqrt(3)i)^3` is a real number.