Advertisements
Advertisements
प्रश्न
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
उत्तर
Let the argument of \[\left( 1 + i\sqrt{3} \right)\] be α. Then,
\[\tan\alpha = \frac{\sqrt{3}}{1} = \tan\frac{\pi}{3}\]
\[ \Rightarrow \alpha = \frac{\pi}{3}\]
Let the argument of \[\left( 1 + i \right)\] be β. Then,
\[\text { tan }\beta = \frac{1}{1} = \tan\frac{\pi}{4}\]
\[ \Rightarrow \beta = \frac{\pi}{4}\]
Let the argument of \[\left( cos\theta + isin\theta \right)\] be γ. Then,
\[\text { tan }\gamma = \frac{sin\theta}{cos\theta} = \text { tan }\theta\]
\[ \Rightarrow \gamma = \theta\]
∴ The argument of
\[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( cos\theta + isin\theta \right) = \alpha + \beta + \gamma = \frac{\pi}{3} + \frac{\pi}{4} + \theta = \frac{7\pi}{12} + \theta\]
Hence, the argument of
\[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( cos\theta + isin\theta \right) is \frac{7\pi}{12} + \theta\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Evaluate: `[i^18 + (1/i)^25]^3`
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
Write −1 + i \[\sqrt{3}\] in polar form .
Write the argument of −i.
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Evaluate the following : i403
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.
Match the statements of Column A and Column B.
Column A | Column B |
(a) The polar form of `i + sqrt(3)` is | (i) Perpendicular bisector of segment joining (–2, 0) and (2, 0). |
(b) The amplitude of `-1 + sqrt(-3)` is | (ii) On or outside the circle having centre at (0, –4) and radius 3. |
(c) If |z + 2| = |z − 2|, then locus of z is | (iii) `(2pi)/3` |
(d) If |z + 2i| = |z − 2i|, then locus of z is | (iv) Perpendicular bisector of segment joining (0, –2) and (0, 2). |
(e) Region represented by |z + 4i| ≥ 3 is | (v) `2(cos pi/6 + i sin pi/6)` |
(f) Region represented by |z + 4| ≤ 3 is | (vi) On or inside the circle having centre (–4, 0) and radius 3 units. |
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in | (vii) First quadrant |
(h) Reciprocal of 1 – i lies in | (viii) Third quadrant |
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8