हिंदी

Find the Real Value of X and Y, If ( 1 + I ) ( X + I Y ) = 2 − 5 I - Mathematics

Advertisements
Advertisements

प्रश्न

Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]

उत्तर

\[ \left( 1 + i \right)\left( x + iy \right) = 2 - 5i\]

\[ \Rightarrow x + iy + ix + i^2 y = 2 - 5i\]

\[ \Rightarrow x + iy + ix - y = 2 - 5i\]

\[ \Rightarrow \left( x - y \right) + i\left( y + x \right) = 2 - 5i\]

\[\text { Comparing both the sides }, \]

\[x - y = 2 . . . (1) \]

\[x + y = - 5 . . . (2)\]

\[\text { Adding equations (1) and (2) }, \]

\[2x = - 3\]

\[ \Rightarrow x = \frac{- 3}{2}\]

\[\text { Substituting the value of x in equation (1) }, \]

\[\frac{- 3}{2} - y = 2\]

\[ \Rightarrow y = \frac{- 3}{2} - 2\]

\[ \Rightarrow y = \frac{- 7}{2}\]

\[ \therefore x = \frac{- 3}{2} \text { and y } = \frac{- 7}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.2 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.2 | Q 2.4 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Find the real value of x and y, if

\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


Write 1 − i in polar form.


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].

Disclaimer: There is a misprinting in the question. It should be  \[\left( 1 + i\sqrt{3} \right)\]  instead of \[\left( 1 + \sqrt{3} \right)\].


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]


The argument of \[\frac{1 - i}{1 + i}\] is


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


Find a and b if abi = 3a − b + 12i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


Evaluate the following : i116 


Show that 1 + i10 + i20 + i30 is a real number


If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.


State True or False for the following:

2 is not a complex number.


If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Show that `(-1+ sqrt(3)i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×