हिंदी

Express the following complex number in the standard form a + i b: (11−4i−21+i)(3−4i5+i) - Mathematics

Advertisements
Advertisements

प्रश्न

Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]

योग

उत्तर

`(1/(1 - 4i) - 2/(1 + i))((3 - 4i)/(5 + i))`

= `(1 + i - 2(1 - 4i))/((1 - 4i)(1 + i)) xx (3 - 4i)/(5 + i)`

= `(1 + i - 2 + 8i)/(1(1 + i)-4i(1 + i))xx (3 - 4i)/(5 + i)`

= `(-1+9i)/((1 + i - 4i + 4)) xx (3 - 4i)/(5 + i)`

= `(-1 + 9i)/((1 + i - 4i + 4)) xx (3 - 4i)/(5 + i)`

= `(-1(3 - 4i) + 9i(3 - 4i))/((5 - 3i)(5 + i))`

= `(-3 + 4i + 27i + 36)/(5(5 + i)-3i(5 + i))`

= `(33 + 31j)/(25 + 5i - 15i + 3)`

= `(33 + 31j)/(28 - 10i)`

= `(33 + 31j)/(28 - 10i) xx ((28 + 10i))/(28 + 10i)`

= `(33 xx 28 + 33 xx 10i + 31i xx 28 + 31i xx 10i)/(28^2 + 10^2)`

= `(924 + 330i + 868i - 310)/(784 + 100)`

= `(614 + 1198i)/(884)`

= `614/884 + (1198)/884 i`

= `307/442 + 599/442 i`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.2 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.2 | Q 1.11 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

i457


Find the value of the following expression:

i + i2 + i3 + i4


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].


Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.


State True or False for the following:

2 is not a complex number.


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Show that `(-1 + sqrt3 "i")^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×