हिंदी

Express the Following Complex Number in the Standard Form a + I B: 3 − 4 I ( 4 − 2 I ) ( 1 + I ) - Mathematics

Advertisements
Advertisements

प्रश्न

Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]

उत्तर

\[\frac{3 - 4i}{\left( 4 - 2i \right)\left( 1 + i \right)}\]

\[ = \frac{3 - 4i}{4 + 2i - 2 i^2} \left( \because i^2 = - 1 \right)\]

\[ = \frac{3 - 4i}{6 + 2i}\]

\[ = \frac{3 - 4i}{6 + 2i} \times \frac{6 - 2i}{6 - 2i}\]

\[ = \frac{18 - 6i - 24i + 8 i^2}{36 - 4 i^2}\]

\[ = \frac{18 - 30i - 8}{36 + 4} \]

\[ = \frac{10 - 30i}{40}\]

\[ = \frac{1}{4} - \frac{3}{4}i\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.2 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.2 | Q 1.1 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


Express the given complex number in the form a + ib: (1 – i)4


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Evaluate the following:

(ii) i528


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Evaluate the following:

\[i^{49} + i^{68} + i^{89} + i^{110}\]


Find the value of the following expression:

i49 + i68 + i89 + i110


Find the value of the following expression:

i5 + i10 + i15


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


The principal value of the amplitude of (1 + i) is


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals


The value of \[(1 + i )^4 + (1 - i )^4\] is


If z is a complex numberthen


Find a and b if (a – b) + (a + b)i = a + 5i


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((1 + "i")/(1 - "i"))^2`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Answer the following:

Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×