Advertisements
Advertisements
प्रश्न
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
उत्तर
\[\frac{3 - 4i}{\left( 4 - 2i \right)\left( 1 + i \right)}\]
\[ = \frac{3 - 4i}{4 + 2i - 2 i^2} \left( \because i^2 = - 1 \right)\]
\[ = \frac{3 - 4i}{6 + 2i}\]
\[ = \frac{3 - 4i}{6 + 2i} \times \frac{6 - 2i}{6 - 2i}\]
\[ = \frac{18 - 6i - 24i + 8 i^2}{36 - 4 i^2}\]
\[ = \frac{18 - 30i - 8}{36 + 4} \]
\[ = \frac{10 - 30i}{40}\]
\[ = \frac{1}{4} - \frac{3}{4}i\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Express the given complex number in the form a + ib: (1 – i)4
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Evaluate the following:
(ii) i528
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
i5 + i10 + i15
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
The principal value of the amplitude of (1 + i) is
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
The value of \[(1 + i )^4 + (1 - i )^4\] is
If z is a complex number, then
Find a and b if (a – b) + (a + b)i = a + 5i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Answer the following:
Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.
Show that `(-1+sqrt3i)^3` is a real number.