Advertisements
Advertisements
प्रश्न
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
उत्तर
\[\frac{1 + i\cos\theta}{1 - 2i\cos\theta}\]
\[ = \frac{1 + i\cos\theta}{1 - 2i\cos\theta} \times \frac{1 + 2i\cos\theta}{1 + 2i\cos\theta}\]
\[ = \frac{1 + 2i\cos\theta + i\cos\theta - 2\cos\theta}{1 + 4 \cos^2 \theta}\]
\[ = \frac{1 - 2\cos\theta + i3\cos\theta}{1 + 4 \cos^2 \theta}\]
\[\text { For it to be purely real, the imaginary part must be zero } . \]
\[3\cos\theta = 0\]
\[\text { This is true for odd multiples of } \frac{\pi}{2} . \]
\[ \therefore \theta = \left( 2n + 1 \right)\frac{\pi}{2}, n \in Z\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)
Express the given complex number in the form a + ib:
`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`
Evaluate the following:
\[i^{37} + \frac{1}{i^{67}}\].
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Show that 1 + i10 + i20 + i30 is a real number.
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Find the multiplicative inverse of the following complex number:
1 − i
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
Solve the equation \[\left| z \right| = z + 1 + 2i\].
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
Find a and b if a + 2b + 2ai = 4 + 6i
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i888
Evaluate the following : `1/"i"^58`
Evaluate the following : i30 + i40 + i50 + i60
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8
Show that `(-1+ sqrt(3)i)^3` is a real number.