Advertisements
Advertisements
प्रश्न
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
उत्तर
i6 = (i2)3 = (– 1)3 = – 1
i7 = i6 × i = (i2)3i = (– 1)3i = – i
i11 = i10 × i = (i2)5i = (– 1)5i = – i
`∴(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
`= (3 + 2/"i")(-1 - (-"i"))(1 +(-"i"))`
`= (3 + 2/"i")(-1 + "i")(1 - "i")`
= `(3 + 2/"i")(1 - "i")(1 - "i")`
= `(3 + (2"i")/"i"^2)(-1 + "i" + "i" - "i"^2)`
= `(3 + (2"i")/(-1))[-1 + 2"i" - (-1)]`
= (3 - 2i)(2i)
= 3(2i) - 2i(2i)
= 6i - 4i2
= 6i - 4(- 1)
= 6i + 4
= 4 + 6i
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Express the given complex number in the form a + ib: i–39
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Express the following complex number in the standard form a + i b:
\[(1 + i)(1 + 2i)\]
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
Solve the equation \[\left| z \right| = z + 1 + 2i\].
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
Write −1 + i \[\sqrt{3}\] in polar form .
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Evaluate the following : i–888
Answer the following:
Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
State True or False for the following:
The order relation is defined on the set of complex numbers.
Show that `(-1 + sqrt3 "i")^3` is a real number.
Show that `(-1+ sqrt(3)i)^3` is a real number.