Advertisements
Advertisements
प्रश्न
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
विकल्प
0
\[\frac{1}{2}\]
\[\cot\frac{\theta}{2}\]
\[\frac{1}{2}\cot\frac{\theta}{2}\]
उत्तर
\[\frac{1}{2}\]
\[z = \frac{1}{1 - \cos\theta - i\sin\theta}\]
\[z = \frac{1}{1 - \cos\theta - i\sin\theta} \times \frac{1 - \cos\theta + i\sin\theta}{1 - \cos\theta + i\sin\theta}\]
\[ \Rightarrow z=\frac{1 - \cos\theta + i\sin\theta}{\left( 1 - \cos\theta \right)^2 - \left( i\sin\theta \right)^2}\]
\[ \Rightarrow z=\frac{1 - \cos\theta + i\sin\theta}{1 + \cos^2 \theta - 2\cos\theta + \sin^2 \theta}\]
\[ \Rightarrow z= \frac{1 - \cos\theta + i\sin\theta}{1 + 1 - 2\cos\theta}$\]
\[ \Rightarrow z=\frac{1 - \cos\theta + i\sin\theta}{2(1 - \cos\theta)}\]
\[ \Rightarrow \text { Re }(z)=\frac{\left( 1 - \cos\theta \right)}{2\left( 1 - \cos\theta \right)}=\frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Evaluate the following:
(ii) i528
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Write (i25)3 in polar form.
Write −1 + i \[\sqrt{3}\] in polar form .
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
Find a and b if (a – b) + (a + b)i = a + 5i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Show that 1 + i10 + i20 + i30 is a real number
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
State True or False for the following:
2 is not a complex number.
Match the statements of Column A and Column B.
Column A | Column B |
(a) The polar form of `i + sqrt(3)` is | (i) Perpendicular bisector of segment joining (–2, 0) and (2, 0). |
(b) The amplitude of `-1 + sqrt(-3)` is | (ii) On or outside the circle having centre at (0, –4) and radius 3. |
(c) If |z + 2| = |z − 2|, then locus of z is | (iii) `(2pi)/3` |
(d) If |z + 2i| = |z − 2i|, then locus of z is | (iv) Perpendicular bisector of segment joining (0, –2) and (0, 2). |
(e) Region represented by |z + 4i| ≥ 3 is | (v) `2(cos pi/6 + i sin pi/6)` |
(f) Region represented by |z + 4| ≤ 3 is | (vi) On or inside the circle having centre (–4, 0) and radius 3 units. |
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in | (vii) First quadrant |
(h) Reciprocal of 1 – i lies in | (viii) Third quadrant |