हिंदी

If ( 1 + I ) Z = ( 1 − I ) ¯ Z ,Then Show that Z = − I ¯ Z . - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].

उत्तर

\[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\]

\[ \Rightarrow \frac{z}{\bar{z}} = \frac{1 - i}{1 + i}\]

\[ \Rightarrow \frac{z}{\bar{z}} = \frac{1 - i}{1 + i} \times \frac{1 - i}{1 - i}\]

\[ \Rightarrow \frac{z}{\bar{z}} = \frac{1 + i^2 - 2i}{1 - i^2}\]

\[ \Rightarrow \frac{z}{\bar{z}} = \frac{1 - 1 - 2i}{1 + 1} [ \because i^2 = - 1]\]

\[ \Rightarrow \frac{z}{\bar{z}} = \frac{- 2i}{2}\]

\[ \Rightarrow \frac{z}{\bar{z}} = - i\]

\[ \Rightarrow z = - i \bar{z}\]

Hence,  

\[z = - i \bar{z}\].

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.2 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.2 | Q 18 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: (1 – i)4


Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

i457


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Find the value of the following expression:

i + i2 + i3 + i4


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Find the multiplicative inverse of the following complex number:

1 − i


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]


Write the argument of −i.


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


The polar form of (i25)3 is


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Evaluate the following : i403 


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×