Advertisements
Advertisements
प्रश्न
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
उत्तर
\[\text { Let z } = \frac{1 - i}{cos\frac{\pi}{3} + i sin\frac{\pi}{3}}\]
\[ = \frac{1 - i}{\frac{1}{2} + i\frac{\sqrt{3}}{2}}\]
\[ = \frac{2 - 2i}{1 + i\sqrt{3}} \times \frac{1 - i\sqrt{3}}{1 - i\sqrt{3}}\]
\[ = \frac{2 - 2i - 2\sqrt{3}i + 2\sqrt{3} i^2}{1 + 3}\]
\[ = \frac{2 - 2\sqrt{3} - 2i(1 + \sqrt{3})}{4}\]
\[ = \frac{\left( 1 - \sqrt{3} \right) + i( - 1 - \sqrt{3})}{2}\]
\[ = \frac{\left( 1 - \sqrt{3} \right)}{2} + i\frac{( - 1 - \sqrt{3})}{2}\]
\[\text { Now,} z = \frac{\left( 1 - \sqrt{3} \right)}{2} + i\frac{( - 1 - \sqrt{3})}{2}\]
\[ \Rightarrow \left| z \right| = \sqrt{\left( \frac{1 - \sqrt{3}}{2} \right)^2 + \left( \frac{- 1 - \sqrt{3}}{2} \right)^2}\]
\[ = \sqrt{\left( \frac{1 + 3 - 2\sqrt{3}}{4} \right) + \left( \frac{1 + 3 + 2\sqrt{3}}{4} \right)}\]
\[ = \sqrt{\frac{8}{4}}\]
\[ = \sqrt{2}\]
\[\text { Let } \beta \text { be an acute angle given by } \tan\beta = \frac{\left| Im\left( z \right) \right|}{\left| Re\left( z \right) \right|} .\text { Then }, \]
\[\tan\beta = \frac{\left| \frac{1 + \sqrt{3}}{2} \right|}{\left| \frac{1 - \sqrt{3}}{2} \right|} = \left| \frac{1 + \sqrt{3}}{1 - \sqrt{3}} \right| = \left| \frac{\tan\frac{\pi}{4} + \tan\frac{\pi}{3}}{1 - \tan\frac{\pi}{4}\tan\frac{\pi}{3}} \right|\]
\[ \Rightarrow \tan\beta = \left| \tan\left( \frac{\pi}{4} + \frac{\pi}{3} \right) \right| = \left| \tan\frac{7\pi}{12} \right|\]
\[ \Rightarrow \beta = \frac{7\pi}{12}\]
\[\text { Clearly, z lies in the fourth quadrant . Therefore} , \arg\left( z \right) = - \frac{7\pi}{12}\]
\[\text { Hence, the polar form of z is } \]
\[\sqrt{2}\left( \cos\frac{7\pi}{12} - \sin\frac{7\pi}{12} \right)\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: (1 – i)4
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Evaluate the following:
i457
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
i + i2 + i3 + i4
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
Write −1 + i \[\sqrt{3}\] in polar form .
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
Show that `(-1 + sqrt(3)"i")^3` is a real number
Evaluate the following : i93
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
State True or False for the following:
2 is not a complex number.
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`