English

Express the Following Complex in the Form R(Cos θ + I Sin θ): 1 − I Cos π 3 + I Sin π 3 - Mathematics

Advertisements
Advertisements

Question

Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]

Solution

\[\text { Let z } = \frac{1 - i}{cos\frac{\pi}{3} + i sin\frac{\pi}{3}}\]

\[ = \frac{1 - i}{\frac{1}{2} + i\frac{\sqrt{3}}{2}}\]

\[ = \frac{2 - 2i}{1 + i\sqrt{3}} \times \frac{1 - i\sqrt{3}}{1 - i\sqrt{3}}\]

\[ = \frac{2 - 2i - 2\sqrt{3}i + 2\sqrt{3} i^2}{1 + 3}\]

\[ = \frac{2 - 2\sqrt{3} - 2i(1 + \sqrt{3})}{4}\]

\[ = \frac{\left( 1 - \sqrt{3} \right) + i( - 1 - \sqrt{3})}{2}\]

\[ = \frac{\left( 1 - \sqrt{3} \right)}{2} + i\frac{( - 1 - \sqrt{3})}{2}\]

\[\text { Now,} z = \frac{\left( 1 - \sqrt{3} \right)}{2} + i\frac{( - 1 - \sqrt{3})}{2}\]

\[ \Rightarrow \left| z \right| = \sqrt{\left( \frac{1 - \sqrt{3}}{2} \right)^2 + \left( \frac{- 1 - \sqrt{3}}{2} \right)^2}\]

\[ = \sqrt{\left( \frac{1 + 3 - 2\sqrt{3}}{4} \right) + \left( \frac{1 + 3 + 2\sqrt{3}}{4} \right)}\]

\[ = \sqrt{\frac{8}{4}}\]

\[ = \sqrt{2}\]

\[\text { Let } \beta \text { be an acute angle given by } \tan\beta = \frac{\left| Im\left( z \right) \right|}{\left| Re\left( z \right) \right|} .\text {  Then }, \]

\[\tan\beta = \frac{\left| \frac{1 + \sqrt{3}}{2} \right|}{\left| \frac{1 - \sqrt{3}}{2} \right|} = \left| \frac{1 + \sqrt{3}}{1 - \sqrt{3}} \right| = \left| \frac{\tan\frac{\pi}{4} + \tan\frac{\pi}{3}}{1 - \tan\frac{\pi}{4}\tan\frac{\pi}{3}} \right|\]

\[ \Rightarrow \tan\beta = \left| \tan\left( \frac{\pi}{4} + \frac{\pi}{3} \right) \right| = \left| \tan\frac{7\pi}{12} \right|\]

\[ \Rightarrow \beta = \frac{7\pi}{12}\]

\[\text { Clearly, z lies in the fourth quadrant . Therefore}  , \arg\left( z \right) = - \frac{7\pi}{12}\]

\[\text { Hence, the polar form of z is } \]

\[\sqrt{2}\left( \cos\frac{7\pi}{12} - \sin\frac{7\pi}{12} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.4 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.4 | Q 3.4 | Page 57

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: i9 + i19


Evaluate: `[i^18 + (1/i)^25]^3`


Find the value of the following expression:

i30 + i80 + i120


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.


Solve the equation \[\left| z \right| = z + 1 + 2i\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


Write −1 + \[\sqrt{3}\] in polar form .


Write the argument of −i.


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


The principal value of the amplitude of (1 + i) is


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals


The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is 


The value of \[(1 + i )^4 + (1 - i )^4\] is


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Show that `(-1 + sqrt(3)"i")^3` is a real number


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×