English

Express the Following Complex in the Form R(Cos θ + I Sin θ): 1 + I Tan α - Mathematics

Advertisements
Advertisements

Question

Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α

Solution

\[\text{Let } z = 1 + i\tan \alpha \]

\[ \because \tan \alpha\text {  is periodic with period }π. \text { So, let us take } \]

\[\alpha \in [0,\frac{\pi}{2}) \cup ( \frac{\pi}{2}, \pi]\]

\[Case I: \]

\[\text { When } \alpha \in [0, \frac{\pi}{2})\]

\[z = 1 + i\tan \alpha \]

\[ \Rightarrow \left| z \right| = \sqrt{1 + \tan^2 \alpha}\]

\[ = \left| \sec \alpha \right| \left[ \because 0 < \alpha < \frac{\pi}{2} \right]\]

\[ = \sec \alpha\]

\[\text { Let } \beta \text { be an acute angle given by } \tan \beta = \left| \frac{Im (z)}{Re(z)} \right|\]

\[\tan \beta = \left| \tan \alpha \right|\]

\[ = \tan \alpha\]

\[ \Rightarrow \beta = \alpha \]

\[\text { As z lies in the first quadrant . Therefore}, \arg(z) = \beta = \alpha\]

\[\text { Thus, z in the polar form is given by } \]

\[z = \sec \alpha \left( \cos\alpha + i\sin \alpha \right)\]

\[\text{Case II }: \]

\[z = 1 + i \tan \alpha \]

\[ \Rightarrow \left| z \right| = \sqrt{1 + \tan^2 \alpha}\]

\[ = \left| \sec \alpha \right| \left[ \because \frac{\pi}{2} < \alpha < \pi \right]\]

\[ = - \sec \alpha\]

\[\text { Let } \beta \text { be an acute angle given by } \tan \beta = \left| \frac{Im (z)}{Re(z)} \right|\]

\[\tan \beta = \left| \tan \alpha \right|\]

\[ = - \tan \alpha\]

\[ \Rightarrow \tan \beta = \tan \left( \pi - \alpha \right)\]

\[ \Rightarrow \beta = \pi - \alpha\]

\[\text { As, z lies in the fourth quadrant } . \]

\[ \therefore \arg(z) = - \beta = \alpha - \pi\]

\[\text { Thus, z in the polar form is given by } \]

\[z = - \sec \alpha \left\{ \cos\left( \alpha - \pi \right) + i\sin \left( \alpha - \pi \right) \right\} \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.4 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.4 | Q 3.1 | Page 57

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


Evaluate: `[i^18 + (1/i)^25]^3`


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Find the value of the following expression:

i49 + i68 + i89 + i110


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Write −1 + \[\sqrt{3}\] in polar form .


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].

Disclaimer: There is a misprinting in the question. It should be  \[\left( 1 + i\sqrt{3} \right)\]  instead of \[\left( 1 + \sqrt{3} \right)\].


If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


The argument of \[\frac{1 - i}{1 + i}\] is


\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals


The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is 


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if a + 2b + 2ai = 4 + 6i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Evaluate the following : i888 


Evaluate the following : i116 


Evaluate the following : `1/"i"^58`


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


Match the statements of column A and B.

Column A Column B
(a) The value of 1 + i2 + i4 + i6 + ... i20 is (i) purely imaginary complex number
(b) The value of `i^(-1097)` is (ii) purely real complex number
(c) Conjugate of 1 + i lies in (iii) second quadrant
(d) `(1 + 2i)/(1 - i)` lies in (iv) Fourth quadrant
(e) If a, b, c ∈ R and b2 – 4ac < 0, then
the roots of the equation ax2 + bx + c = 0
are non real (complex) and
(v) may not occur in conjugate pairs
(f) If a, b, c ∈ R and b2 – 4ac > 0, and
b2 – 4ac is a perfect square, then the
roots of the equation ax2 + bx + c = 0
(vi) may occur in conjugate pairs

State True or False for the following:

2 is not a complex number.


If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×