Advertisements
Advertisements
Question
The argument of \[\frac{1 - i}{1 + i}\] is
Options
\[- \frac{\pi}{2}\]
\[\frac{\pi}{2}\]
\[\frac{3\pi}{2}\]
\[\frac{5\pi}{2}\]
Solution
\[- \frac{\pi}{2}\]
\[\text { Let } z = \frac{1 - i}{1 + i}\]
\[ \Rightarrow z=\frac{1 - i}{1 + i}\times\frac{1 - i}{1 - i}\]
\[ \Rightarrow z=\frac{1 + i^2 - 2i}{1 - i^2}\]
\[ \Rightarrow z = \frac{1 - 1 - 2i}{1 + 1}\]
\[ \Rightarrow z=\frac{- 2i}{2}\]
\[ \Rightarrow z= - i\]
\[\text { Since, z lies on negative direction of imaginary axis } . \]
\[\text { Therefore, } \arg (z) = \frac{- \pi}{2}\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Find the value of the following expression:
i30 + i80 + i120
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
Find the multiplicative inverse of the following complex number:
1 − i
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
Which of the following is correct for any two complex numbers z1 and z2?
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Find a and b if a + 2b + 2ai = 4 + 6i
Find a and b if abi = 3a − b + 12i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
Evaluate the following : i888
Evaluate the following : `1/"i"^58`
Answer the following:
Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.
State True or False for the following:
The order relation is defined on the set of complex numbers.