English

Evaluate the Following: 2 X 3 + 2 X 2 − 7 X + 72 , When X = 3 − 5 I 2 - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]

Solution

\[ x = \frac{3 - 5i}{2}\]

\[ \Rightarrow x^2 = \left( \frac{3 - 5i}{2} \right)^2 \]

\[ = \frac{9 + 25 i^2 - 30i}{4}\]

\[ = \frac{- 16 - 30i}{4}\]

\[ \Rightarrow x^3 = \frac{- 16 - 30i}{4} \times \frac{3 - 5i}{2}\]

\[ = \frac{- 48 + 80i - 90i + 150 i^2}{8}\]

\[ = \frac{- 198 - 10i}{8}\]

\[ \therefore 2 x^3 + 2 x^2 - 7x + 72 = 2\left( \frac{- 198 - 10i}{8} \right) + 2\left( \frac{- 16 - 30i}{4} \right) - 7\left( \frac{3 - 5i}{2} \right) + 72\]

\[ = \frac{- 198 - 10i - 32 - 60i - 42 + 70i + 288}{4}\]

\[ = \frac{16}{4}\]

\[ = 4\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.2 [Page 32]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.2 | Q 16.1 | Page 32

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Evaluate: `[i^18 + (1/i)^25]^3`


Evaluate the following:

(ii) i528


Show that 1 + i10 + i20 + i30 is a real number.


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.


Write 1 − i in polar form.


Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].

Disclaimer: There is a misprinting in the question. It should be  \[\left( 1 + i\sqrt{3} \right)\]  instead of \[\left( 1 + \sqrt{3} \right)\].


The polar form of (i25)3 is


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


The amplitude of \[\frac{1}{i}\] is equal to


The argument of \[\frac{1 - i}{1 + i}\] is


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


Which of the following is correct for any two complex numbers z1 and z2?

 


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


Evaluate the following : i93  


Evaluate the following : `1/"i"^58`


If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.


If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.


State True or False for the following:

The order relation is defined on the set of complex numbers.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×