Advertisements
Advertisements
Question
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
Solution
\[\text{Let} z = \sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\]
\[ \Rightarrow \left| z \right| = \sqrt{\left( \sin\frac{\pi}{5} \right)^2 + \left( 1 - \cos\frac{\pi}{5} \right)^2}\]
\[ = \sqrt{\sin^2 \frac{\pi}{5} + 1 + \cos^2 \frac{\pi}{5} - 2\cos\frac{\pi}{5}}\]
\[ = \sqrt{2 - 2\cos\frac{\pi}{5}}\]
\[ = \sqrt{2}\left( \sqrt{1 - \cos\frac{\pi}{5}} \right)\]
\[ = \sqrt{2}\left( \sqrt{2 \sin^2 \frac{\pi}{10}} \right)\]
\[ = 2\sin\frac{\pi}{10}\]
\[\text { Let } \beta \text { be an acute angle given by } \tan\beta = \frac{\left| Im\left( z \right) \right|}{\left| Re\left( z \right) \right|} . \text { Then }, \]
\[\tan\beta = \frac{\left| 1 - \cos\frac{\pi}{5} \right|}{\left| \sin\frac{\pi}{5} \right|} = \left| \frac{2 \sin^2 \frac{\pi}{10}}{2\sin\frac{\pi}{10}\cos\frac{\pi}{10}} \right| = \left| \tan\frac{\pi}{10} \right|\]
\[ \Rightarrow \beta = \frac{\pi}{10}\]
\[\text { Clearly, z lies in the first quadrant . Therefore }, \arg\left( z \right) = \frac{\pi}{10}\]
\[\text {Hence, the polar form of z is } \]
\[2\sin\frac{\pi}{10}\left( \cos\frac{\pi}{10} + i\sin\frac{\pi}{10} \right)\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Evaluate the following:
\[i^{37} + \frac{1}{i^{67}}\].
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Find the multiplicative inverse of the following complex number:
1 − i
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
Solve the equation \[\left| z \right| = z + 1 + 2i\].
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
The principal value of the amplitude of (1 + i) is
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.
Show that `(-1 + sqrt3 "i")^3` is a real number.
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`