Advertisements
Advertisements
Question
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Solution
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
= `((3 + 2"i")(2 + 5"i") + (2 - 5"i")(3 -2"i"))/((2 - 5"i")(2 + 5"i"))`
= `(6 + 15"i" + 4"i" + 10"i"^2 + 6 - 4"i" - 15"i" + 10"i"^2)/(4 - 25"i"^2)`
= `(12 + 20"i"^2)/(4 - 25"i"^2)`
= `(12 + 20(-1))/(4 -25(-1))` ...[∵ i2 = – 1]
= `(-8)/29`
∴ `(3 + 2"i")/(2 - 5"i") + (3 - 2"i")/(2 + 5"i") = (-8)/29 + 0"i"`
∴ a = `(-8)/29` and b = 0
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Evaluate: `[i^18 + (1/i)^25]^3`
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Find the value of the following expression:
i + i2 + i3 + i4
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
Solve the equation \[\left| z \right| = z + 1 + 2i\].
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
Find a and b if `1/("a" + "ib")` = 3 – 2i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Evaluate the following : i93
Evaluate the following : i403
Answer the following:
Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.
Show that `(-1 + sqrt3 "i")^3` is a real number.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8