Advertisements
Advertisements
Question
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.
Options
`npi + pi/4`
`npi + (-1)n pi/4`
`2npi +- pi/2`
None of these
Solution
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is `underlinebb(2npi +- pi/2)`.
Explanation:
Let z = `(1 + i cos theta)/(1 - 2i cos theta)`
= `(1 + i cos theta)/(1 - 2i cos theta) xx (1 + 2i cos theta)/(1 + 2i cos theta)`
= `(1 + 2i cos theta + i cos theta + 2i^2 cos^2 theta)/(1 - 4i^2 cos^2 theta)`
= `(1 + 3i cos theta - 2 cos^2 theta)/(1 + 4 cos^2 theta)`
= `(1 - 2 cos^2 theta)/(1 + 4 cos^2 theta) + (3 cos theta)/(1 + 4 cos^2 theta)i`
If z is a real number, then
`(3 cos theta)/(1 + 4cos^2 theta)` = 0
⇒ 3cosθ = 0
⇒ cosθ = 0
∴ θ = `2npi +- pi/2`, n ∈ N.
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Evaluate the following:
\[\frac{1}{i^{58}}\]
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Find the value of the following expression:
i5 + i10 + i15
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Express the following complex number in the standard form a + i b:
\[(1 + i)(1 + 2i)\]
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
Write 1 − i in polar form.
Write the argument of −i.
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
Evaluate the following : i888
Evaluate the following : i93
Evaluate the following : i–888
Match the statements of Column A and Column B.
Column A | Column B |
(a) The polar form of `i + sqrt(3)` is | (i) Perpendicular bisector of segment joining (–2, 0) and (2, 0). |
(b) The amplitude of `-1 + sqrt(-3)` is | (ii) On or outside the circle having centre at (0, –4) and radius 3. |
(c) If |z + 2| = |z − 2|, then locus of z is | (iii) `(2pi)/3` |
(d) If |z + 2i| = |z − 2i|, then locus of z is | (iv) Perpendicular bisector of segment joining (0, –2) and (0, 2). |
(e) Region represented by |z + 4i| ≥ 3 is | (v) `2(cos pi/6 + i sin pi/6)` |
(f) Region represented by |z + 4| ≤ 3 is | (vi) On or inside the circle having centre (–4, 0) and radius 3 units. |
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in | (vii) First quadrant |
(h) Reciprocal of 1 – i lies in | (viii) Third quadrant |