Advertisements
Advertisements
Question
|z1 + z2| = |z1| + |z2| is possible if ______.
Options
`z_2 = barz_1`
`z_2 = 1/z_1`
arg(z1) = arg(z2)
|z1| = |z2|
Solution
|z1 + z2| = |z1| + |z2| is possible if arg (z1) = arg (z2).
Explanation:
Let z1 = r1(cosθ1 + isin θ1) and z2 = r2(cosθ2 + isin θ2)
Since |z1 + z2| = |z1| + |z2|
|z1 + z2| = r1cosθ1 + ir1sinθ1 + r2cosθ2 + ir2sinθ2
|z1 + z2| = `sqrt(r_1^2 cos^2 theta_ + r_2^2 cos^2 theta_2 + 2r_1r_2 cos theta_1 cos theta_2 + r_1^2 sin^2 theta_1 + r_2^2 sin^2 theta_2 + 2r_1r_2 sin theta_1 sin theta_2)`
= `sqrt(r_1^2 + r_2^2 + 2r_1r_2 cos(theta_1 - theta_2))`
But |z1 + z2| = |z1| + |z2|
So `sqrt(r_1^2 + r_2^2 + 2r_1r_2 cos(theta_1 - theta_2))` = r1 + r2
Squaring both sides, we get
`r_1^2 + r_2^2 + 2r_1r_2 cos(theta_1 - theta_2) = r_1^2 + r_2^2 + 2r_1r_2`
⇒ `2r_1r_2 - 2r_1r_2 cos(theta_1 - theta_2)` = 0
⇒ 1 – cos(θ1 – θ2) = 0
⇒ cos(θ1 – θ2) = 1
⇒ θ1 – θ2 = 0
⇒ θ1 = θ2
So, arg(z1) = arg(z2)
APPEARS IN
RELATED QUESTIONS
Find the modulus and the argument of the complex number `z = – 1 – isqrt3`
Convert the given complex number in polar form: 1 – i
Convert the given complex number in polar form: – 1 – i
Convert the given complex number in polar form: –3
Convert the given complex number in polar form `sqrt3 + i`
Convert the given complex number in polar form: i
Convert the following in the polar form:
`(1+7i)/(2-i)^2`
Convert the following in the polar form:
`(1+3i)/(1-2i)`
If the imaginary part of `(2z + 1)/(iz + 1)` is –2, then show that the locus of the point representing z in the argand plane is a straight line.
Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0.
The locus of z satisfying arg(z) = `pi/3` is ______.
What is the polar form of the complex number (i25)3?
The amplitude of `sin pi/5 + i(1 - cos pi/5)` is ______.
Show that the complex number z, satisfying the condition arg`((z - 1)/(z + 1)) = pi/4` lies on a circle.
If arg(z – 1) = arg(z + 3i), then find x – 1 : y. where z = x + iy.
If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.
arg(z) + arg`barz (barz ≠ 0)` is ______.
If |z| = 4 and arg(z) = `(5pi)/6`, then z = ______.
Find z if |z| = 4 and arg(z) = `(5pi)/6`.
Find principal argument of `(1 + i sqrt(3))^2`.
If arg(z) < 0, then arg(–z) – arg(z) = ______.