मराठी

|z1 + z2| = |z1| + |z2| is possible if ______. - Mathematics

Advertisements
Advertisements

प्रश्न

|z1 + z2| = |z1| + |z2| is possible if ______.

पर्याय

  • `z_2 = barz_1`

  • `z_2 = 1/z_1`

  • arg(z1) = arg(z2)

  • |z1| = |z2|

MCQ
रिकाम्या जागा भरा

उत्तर

|z1 + z2| = |z1| + |z2| is possible if arg (z1) = arg (z2).

Explanation:

Let z1 = r1(cosθ1 + isin θ1) and z2 = r2(cosθ2 + isin θ2)

Since |z1 + z2| = |z1| + |z2|

 |z1 + z2| = r1cosθ1 + ir1sinθ1 + r2cosθ2 + ir2sinθ2

|z1 + z2| = `sqrt(r_1^2 cos^2 theta_ + r_2^2 cos^2 theta_2 + 2r_1r_2 cos theta_1 cos theta_2 + r_1^2 sin^2 theta_1 + r_2^2 sin^2 theta_2 + 2r_1r_2 sin theta_1 sin theta_2)`

= `sqrt(r_1^2 + r_2^2 + 2r_1r_2 cos(theta_1 - theta_2))`

But |z1 + z2| = |z1| + |z2|

So `sqrt(r_1^2 + r_2^2 + 2r_1r_2 cos(theta_1 - theta_2))` = r1 + r2

Squaring both sides, we get

`r_1^2 + r_2^2 + 2r_1r_2 cos(theta_1 - theta_2) = r_1^2 + r_2^2 + 2r_1r_2`

⇒ `2r_1r_2 - 2r_1r_2 cos(theta_1 - theta_2)` = 0

⇒ 1 – cos(θ1 – θ2) = 0

⇒ cos(θ1 – θ2) = 1

⇒ θ1 – θ2 = 0

⇒ θ1 = θ2

So, arg(z1) = arg(z2)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Exercise | Q 47 | पृष्ठ ९६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the modulus and the argument of the complex number  `z = – 1 – isqrt3`


Find the modulus and the argument of the complex number `z =- sqrt3 + i`


Convert the given complex number in polar form: 1 – i


Convert the given complex number in polar form: – 1 + i


Convert the given complex number in polar form: – 1 – i


Convert the given complex number in polar form: –3


Convert the given complex number in polar form `sqrt3 + i`


Convert the given complex number in polar form: i


Convert the following in the polar form:

`(1+3i)/(1-2i)`


Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0.


If |z| = 2 and arg(z) = `pi/4`, then z = ______.


What is the polar form of the complex number (i25)3?


The amplitude of `sin  pi/5 + i(1 - cos  pi/5)` is ______.


z1 and z2 are two complex numbers such that |z1| = |z2| and arg(z1) + arg(z2) = π, then show that z1 = `-barz_2`.


If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.


Write the complex number z = `(1 - i)/(cos  pi/3 + i sin  pi/3)` in polar form.


If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = `pi/2`, then show that `barz`w = –i.


State True or False for the following:

Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg(z1 – z2) = 0.


Find z if |z| = 4 and arg(z) = `(5pi)/6`.


Find principal argument of `(1 + i sqrt(3))^2`.


The value of arg (x) when x < 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×