मराठी

Find z if |z| = 4 and arg(z) = 5π6. - Mathematics

Advertisements
Advertisements

प्रश्न

Find z if |z| = 4 and arg(z) = `(5pi)/6`.

बेरीज

उत्तर

Given that: |z| = 4 and arg(z) = `(5pi)/6`

⇒ θ = `(5pi)/6`

|z| = 4

⇒ r = 4

So Polar form of z = `r[cos theta + i  sin theta]`

= `4[cos  (5pi)/6 + i  sin  (5pi)/6]`

= `4[cos (pi - pi/6) + i  sin(pi - pi/6)]`

= `4[- cos  pi/6 + i  sin  pi/6]`

= `4[(-sqrt(3))/2 + i  1/2]`

= `-2sqrt(3) + 2i`

Hence z = `-2sqrt(3) + 2i`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Exercise | Q 31 | पृष्ठ ९५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the modulus and the argument of the complex number  `z = – 1 – isqrt3`


Find the modulus and the argument of the complex number `z =- sqrt3 + i`


Convert the given complex number in polar form: – 1 + i


Convert the given complex number in polar form: – 1 – i


Convert the given complex number in polar form: i


Convert the following in the polar form:

`(1+7i)/(2-i)^2`


Convert the following in the polar form:

`(1+3i)/(1-2i)`


Let z1 and z2 be two complex numbers such that `barz_1 + ibarz_2` = 0 and arg(z1 z2) = π. Then find arg (z1).


If |z| = 2 and arg(z) = `pi/4`, then z = ______.


The locus of z satisfying arg(z) = `pi/3` is ______.


What is the polar form of the complex number (i25)3?


Show that the complex number z, satisfying the condition arg`((z - 1)/(z + 1)) = pi/4` lies on a circle.


If arg(z – 1) = arg(z + 3i), then find x – 1 : y. where z = x + iy.


If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.


Write the complex number z = `(1 - i)/(cos  pi/3 + i sin  pi/3)` in polar form.


If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = `pi/2`, then show that `barz`w = –i.


arg(z) + arg`barz  (barz ≠ 0)` is ______.


If |z| = 4 and arg(z) = `(5pi)/6`, then z = ______.


State True or False for the following:

Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg(z1 – z2) = 0.


Find principal argument of `(1 + i sqrt(3))^2`.


The value of arg (x) when x < 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×