मराठी

Find principal argument of (1+i3)2. - Mathematics

Advertisements
Advertisements

प्रश्न

Find principal argument of `(1 + i sqrt(3))^2`.

बेरीज

उत्तर

Given that: `(1 + i sqrt(3))^2 = 1 + i^2 . 3 + 2sqrt(3) i`

= `1 - 3 + 2sqrt(3)i`

= `-2 + 2sqrt(3)i`

`tan alpha = |(2sqrt(3))/2|`  ......`[because tan alpha = |("Img"(z))/("Re"(z))|]`

⇒ `tan alpha = |- sqrt(3)| = sqrt(3)`

⇒ `tan alpha = tan  pi/3`

∴ `alpha = pi/3`

Now Re(z) < 0 and image(z) > 0.

∴ arg(z) = `pi - alpha`

= `pi - pi/3`

= `(2pi)/3`

Hence, the principal arg = `(2pi)/3`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Exercise | Q 33 | पृष्ठ ९५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the modulus and the argument of the complex number  `z = – 1 – isqrt3`


Find the modulus and the argument of the complex number `z =- sqrt3 + i`


Convert the given complex number in polar form: 1 – i


Convert the given complex number in polar form: – 1 – i


Convert the given complex number in polar form `sqrt3 + i`


Convert the given complex number in polar form: i


Convert the following in the polar form:

`(1+7i)/(2-i)^2`


If the imaginary part of `(2z + 1)/(iz + 1)` is –2, then show that the locus of the point representing z in the argand plane is a straight line.


Let z1 and z2 be two complex numbers such that `barz_1 + ibarz_2` = 0 and arg(z1 z2) = π. Then find arg (z1).


The locus of z satisfying arg(z) = `pi/3` is ______.


If arg(z – 1) = arg(z + 3i), then find x – 1 : y. where z = x + iy.


z1 and z2 are two complex numbers such that |z1| = |z2| and arg(z1) + arg(z2) = π, then show that z1 = `-barz_2`.


If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.


If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = `pi/2`, then show that `barz`w = –i.


arg(z) + arg`barz  (barz ≠ 0)` is ______.


If |z| = 4 and arg(z) = `(5pi)/6`, then z = ______.


State True or False for the following:

Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg(z1 – z2) = 0.


Find z if |z| = 4 and arg(z) = `(5pi)/6`.


|z1 + z2| = |z1| + |z2| is possible if ______.


The value of arg (x) when x < 0 is ______.


If arg(z) < 0, then arg(–z) – arg(z) = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×