मराठी

If |z| = 4 and arg(z) = 5π6, then z = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If |z| = 4 and arg(z) = `(5pi)/6`, then z = ______.

रिकाम्या जागा भरा

उत्तर

If |z| = 4 and arg(z) = `(5pi)/6`, then z = `underlinebb(-2 sqrt(3) + 2i)`.

Explanation:

Given that:  |z| = 4 and arg(z) = `(5pi)/6`

Let z = x + yi

|z| = `sqrt(x^2 + y^2)` = 4

⇒ x2 + y2 = 16   ......(i)

arg(z) = `tan^-1  (y/x) = (5pi)/6`

⇒ `y/x = tan  (5pi)/6`

= `tan(pi - pi/6)`

= `- tan  pi/6`

= `-1/sqrt(3)`

∴ x = `- sqrt(3) y`  ....(ii)

From equation (i) and (ii),

`(- sqrt(3) y)^2 + y^2` = 16

⇒ 3y2 + y2 = 16

⇒ 4y2 = 16

⇒ y2 = 4

⇒ y = `+-  2`

∴ x = `-2 sqrt(3)`

So, z = `-2 sqrt(3) + 2i`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Exercise | Q 25.(x) | पृष्ठ ९३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the modulus and the argument of the complex number  `z = – 1 – isqrt3`


Find the modulus and the argument of the complex number `z =- sqrt3 + i`


Convert the given complex number in polar form: 1 – i


Convert the given complex number in polar form: – 1 + i


Convert the given complex number in polar form: – 1 – i


Convert the given complex number in polar form: –3


Convert the given complex number in polar form `sqrt3 + i`


Convert the given complex number in polar form: i


Convert the following in the polar form:

`(1+7i)/(2-i)^2`


Convert the following in the polar form:

`(1+3i)/(1-2i)`


If the imaginary part of `(2z + 1)/(iz + 1)` is –2, then show that the locus of the point representing z in the argand plane is a straight line.


Let z1 and z2 be two complex numbers such that `barz_1 + ibarz_2` = 0 and arg(z1 z2) = π. Then find arg (z1).


If |z| = 2 and arg(z) = `pi/4`, then z = ______.


The locus of z satisfying arg(z) = `pi/3` is ______.


What is the polar form of the complex number (i25)3?


The amplitude of `sin  pi/5 + i(1 - cos  pi/5)` is ______.


Show that the complex number z, satisfying the condition arg`((z - 1)/(z + 1)) = pi/4` lies on a circle.


If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.


Write the complex number z = `(1 - i)/(cos  pi/3 + i sin  pi/3)` in polar form.


arg(z) + arg`barz  (barz ≠ 0)` is ______.


Find z if |z| = 4 and arg(z) = `(5pi)/6`.


|z1 + z2| = |z1| + |z2| is possible if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×