Advertisements
Advertisements
प्रश्न
If |z| = 4 and arg(z) = `(5pi)/6`, then z = ______.
उत्तर
If |z| = 4 and arg(z) = `(5pi)/6`, then z = `underlinebb(-2 sqrt(3) + 2i)`.
Explanation:
Given that: |z| = 4 and arg(z) = `(5pi)/6`
Let z = x + yi
|z| = `sqrt(x^2 + y^2)` = 4
⇒ x2 + y2 = 16 ......(i)
arg(z) = `tan^-1 (y/x) = (5pi)/6`
⇒ `y/x = tan (5pi)/6`
= `tan(pi - pi/6)`
= `- tan pi/6`
= `-1/sqrt(3)`
∴ x = `- sqrt(3) y` ....(ii)
From equation (i) and (ii),
`(- sqrt(3) y)^2 + y^2` = 16
⇒ 3y2 + y2 = 16
⇒ 4y2 = 16
⇒ y2 = 4
⇒ y = `+- 2`
∴ x = `-2 sqrt(3)`
So, z = `-2 sqrt(3) + 2i`
APPEARS IN
संबंधित प्रश्न
Find the modulus and the argument of the complex number `z = – 1 – isqrt3`
Find the modulus and the argument of the complex number `z =- sqrt3 + i`
Convert the given complex number in polar form: 1 – i
Convert the given complex number in polar form: – 1 + i
Convert the given complex number in polar form: – 1 – i
Convert the given complex number in polar form: –3
Convert the given complex number in polar form `sqrt3 + i`
Convert the given complex number in polar form: i
Convert the following in the polar form:
`(1+7i)/(2-i)^2`
Convert the following in the polar form:
`(1+3i)/(1-2i)`
If the imaginary part of `(2z + 1)/(iz + 1)` is –2, then show that the locus of the point representing z in the argand plane is a straight line.
Let z1 and z2 be two complex numbers such that `barz_1 + ibarz_2` = 0 and arg(z1 z2) = π. Then find arg (z1).
If |z| = 2 and arg(z) = `pi/4`, then z = ______.
The locus of z satisfying arg(z) = `pi/3` is ______.
What is the polar form of the complex number (i25)3?
The amplitude of `sin pi/5 + i(1 - cos pi/5)` is ______.
Show that the complex number z, satisfying the condition arg`((z - 1)/(z + 1)) = pi/4` lies on a circle.
If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.
Write the complex number z = `(1 - i)/(cos pi/3 + i sin pi/3)` in polar form.
arg(z) + arg`barz (barz ≠ 0)` is ______.
Find z if |z| = 4 and arg(z) = `(5pi)/6`.
|z1 + z2| = |z1| + |z2| is possible if ______.